Abstract

We demonstrated a kHz-linewidth single-frequency laser at 1.95 μm using the self-developed heavily Tm3+-doped single-mode germanate glass fiber with the net gain coefficient of 2.3 dB per centimeter. The maximum output power of the stable single longitudinal mode continuous wave laser is over 200 mW. The slope efficiency measured versus the absorbed pump power is 34.8%, the signal-to-noise ratio is higher than 68 dB and laser linewidth is less than 7 kHz. A wavelength-tuning from 1949.55 to 1951.23 nm was also demonstrated based on changing the tension on the fiber Bragg grating outside the cavity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett.29(13), 1503–1505 (2004).
    [CrossRef] [PubMed]
  2. N. Y. Voo, J. K. Sahu, and M. Ibsen, “345 mW 1836 nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett.17(12), 2550–2552 (2005).
    [CrossRef]
  3. C. Wu, Y. Ju, Z. Wang, Q. Wang, C. Song, and Y. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett.5(11), 793–796 (2008).
    [CrossRef]
  4. X. Zhang, L. Li, J. Cui, Y. Ju, and Y. Wang, “Single longitudinal mode and contiuously tunable frequency Tm, Ho:YLF laser with two solid etalons,” Laser Phys. Lett.7(3), 194–197 (2010).
    [CrossRef]
  5. N. Coluccelli, G. Galzerano, D. Parisi, M. Tonelli, and P. Laporta, “Diode-pumped single-frequency Tm:LiLuF4 ring laser,” Opt. Lett.33(17), 1951–1953 (2008).
    [CrossRef] [PubMed]
  6. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett.34(8), 1204–1206 (2009).
    [CrossRef] [PubMed]
  7. J. Geng, J. Wu, S. Jiang, and J. Yu, “Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 micro m,” Opt. Lett.32(4), 355–357 (2007).
    [CrossRef] [PubMed]
  8. J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett.34(22), 3493–3495 (2009).
    [CrossRef] [PubMed]
  9. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics6(7), 423–431 (2012).
    [CrossRef]
  10. W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt.52(19), 4601–4607 (2013).
    [CrossRef] [PubMed]
  11. C. V. Poulsen, P. Varming, J. E. Pedersen, M. Beukema, and S. L. Lauridsen, “Applications of single frequency fiber lasers,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, 2003 CLEO/Europe, 617 (2003).
  12. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express18(2), 1249–1254 (2010).
    [CrossRef] [PubMed]
  13. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett.36(18), 3708–3710 (2011).
    [CrossRef] [PubMed]
  14. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett.20(8), 875–877 (1995).
    [CrossRef] [PubMed]
  15. Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, Erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol.24(5), 2179–2183 (2006).
    [CrossRef]
  16. M. Horowitz, R. Daisy, B. Fischer, and J. L. Zyskind, “Linewidth-narrowing mechanism in lasers by nonlinear wave mixing,” Opt. Lett.19(18), 1406–1408 (1994).
    [CrossRef] [PubMed]
  17. H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency Erbium-doped fiber laser,” IEEE Photon. Technol. Lett.15(2), 185–187 (2003).
    [CrossRef]
  18. S. Yu, Z. Yang, and S. Xu, “Judd-Ofelt and laser parameterization of Tm3+-doped barium gallo-germanate glass fabricated with efficient dehydration methods,” Opt. Mater.31(11), 1723–1728 (2009).
    [CrossRef]
  19. S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc.20(3), 745–751 (2010).
    [CrossRef] [PubMed]
  20. M. Hercher, “An analysis of saturable absorbers,” Appl. Opt.6(5), 947–954 (1967).
    [CrossRef] [PubMed]
  21. P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express14(9), 3923–3928 (2006).
    [CrossRef] [PubMed]
  22. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49(25), 4801–4807 (2010).
    [CrossRef] [PubMed]
  23. P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett.18(9), 998–1000 (2006).
    [CrossRef]

2013

2012

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics6(7), 423–431 (2012).
[CrossRef]

2011

2010

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm,” Opt. Express18(2), 1249–1254 (2010).
[CrossRef] [PubMed]

X. Zhang, L. Li, J. Cui, Y. Ju, and Y. Wang, “Single longitudinal mode and contiuously tunable frequency Tm, Ho:YLF laser with two solid etalons,” Laser Phys. Lett.7(3), 194–197 (2010).
[CrossRef]

S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc.20(3), 745–751 (2010).
[CrossRef] [PubMed]

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49(25), 4801–4807 (2010).
[CrossRef] [PubMed]

2009

2008

C. Wu, Y. Ju, Z. Wang, Q. Wang, C. Song, and Y. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett.5(11), 793–796 (2008).
[CrossRef]

N. Coluccelli, G. Galzerano, D. Parisi, M. Tonelli, and P. Laporta, “Diode-pumped single-frequency Tm:LiLuF4 ring laser,” Opt. Lett.33(17), 1951–1953 (2008).
[CrossRef] [PubMed]

2007

2006

2005

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345 mW 1836 nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett.17(12), 2550–2552 (2005).
[CrossRef]

2004

2003

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency Erbium-doped fiber laser,” IEEE Photon. Technol. Lett.15(2), 185–187 (2003).
[CrossRef]

1995

1994

1967

Agger, S.

Amzajerdian, F.

Babin, F.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency Erbium-doped fiber laser,” IEEE Photon. Technol. Lett.15(2), 185–187 (2003).
[CrossRef]

Book, L. D.

Chen, D.

Chen, H.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency Erbium-doped fiber laser,” IEEE Photon. Technol. Lett.15(2), 185–187 (2003).
[CrossRef]

Cheng, Y.

Coluccelli, N.

Cui, J.

X. Zhang, L. Li, J. Cui, Y. Ju, and Y. Wang, “Single longitudinal mode and contiuously tunable frequency Tm, Ho:YLF laser with two solid etalons,” Laser Phys. Lett.7(3), 194–197 (2010).
[CrossRef]

Daisy, R.

Di Domenico, G.

Feng, S. C.

Feng, T.

Feng, Z. M.

Fischer, B.

Galzerano, G.

Geng, J.

Goodno, G. D.

Hercher, M.

Horak, P.

P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express14(9), 3923–3928 (2006).
[CrossRef] [PubMed]

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett.18(9), 998–1000 (2006).
[CrossRef]

Horowitz, M.

Ibsen, M.

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett.18(9), 998–1000 (2006).
[CrossRef]

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345 mW 1836 nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett.17(12), 2550–2552 (2005).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics6(7), 423–431 (2012).
[CrossRef]

Jiang, S.

Jiang, Z. H.

Ju, Y.

X. Zhang, L. Li, J. Cui, Y. Ju, and Y. Wang, “Single longitudinal mode and contiuously tunable frequency Tm, Ho:YLF laser with two solid etalons,” Laser Phys. Lett.7(3), 194–197 (2010).
[CrossRef]

C. Wu, Y. Ju, Z. Wang, Q. Wang, C. Song, and Y. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett.5(11), 793–796 (2008).
[CrossRef]

Kringlebotn, J. T.

Laming, R. I.

Laporta, P.

Leblanc, M.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency Erbium-doped fiber laser,” IEEE Photon. Technol. Lett.15(2), 185–187 (2003).
[CrossRef]

Li, L.

X. Zhang, L. Li, J. Cui, Y. Ju, and Y. Wang, “Single longitudinal mode and contiuously tunable frequency Tm, Ho:YLF laser with two solid etalons,” Laser Phys. Lett.7(3), 194–197 (2010).
[CrossRef]

Li, Q.

Liu, S.

Liu, T.

Loh, W. H.

Luo, T.

Meng, Z.

Parisi, D.

Payne, D. N.

Peng, M.

Peng, W. J.

Povlsen, J. H.

Qian, Q.

Qiu, J.

Rothenberg, J. E.

Sahu, J. K.

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345 mW 1836 nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett.17(12), 2550–2552 (2005).
[CrossRef]

Schilt, S.

Schinn, G. W.

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency Erbium-doped fiber laser,” IEEE Photon. Technol. Lett.15(2), 185–187 (2003).
[CrossRef]

Shen, S.

Song, C.

C. Wu, Y. Ju, Z. Wang, Q. Wang, C. Song, and Y. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett.5(11), 793–796 (2008).
[CrossRef]

Stewart, G.

Tan, S. Y.

Thomann, P.

Tonelli, M.

Varming, P.

Voo, N. Y.

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett.18(9), 998–1000 (2006).
[CrossRef]

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345 mW 1836 nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett.17(12), 2550–2552 (2005).
[CrossRef]

Wang, Q.

J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett.34(22), 3493–3495 (2009).
[CrossRef] [PubMed]

C. Wu, Y. Ju, Z. Wang, Q. Wang, C. Song, and Y. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett.5(11), 793–796 (2008).
[CrossRef]

Wang, Y.

X. Zhang, L. Li, J. Cui, Y. Ju, and Y. Wang, “Single longitudinal mode and contiuously tunable frequency Tm, Ho:YLF laser with two solid etalons,” Laser Phys. Lett.7(3), 194–197 (2010).
[CrossRef]

C. Wu, Y. Ju, Z. Wang, Q. Wang, C. Song, and Y. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett.5(11), 793–796 (2008).
[CrossRef]

Wang, Z.

C. Wu, Y. Ju, Z. Wang, Q. Wang, C. Song, and Y. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett.5(11), 793–796 (2008).
[CrossRef]

Wei, X.

Whitenett, G.

Wu, C.

C. Wu, Y. Ju, Z. Wang, Q. Wang, C. Song, and Y. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett.5(11), 793–796 (2008).
[CrossRef]

Wu, J.

Xu, S.

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett.36(18), 3708–3710 (2011).
[CrossRef] [PubMed]

S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc.20(3), 745–751 (2010).
[CrossRef] [PubMed]

S. Yu, Z. Yang, and S. Xu, “Judd-Ofelt and laser parameterization of Tm3+-doped barium gallo-germanate glass fabricated with efficient dehydration methods,” Opt. Mater.31(11), 1723–1728 (2009).
[CrossRef]

Xu, S. H.

Yan, F. P.

Yang, Z.

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett.36(18), 3708–3710 (2011).
[CrossRef] [PubMed]

S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc.20(3), 745–751 (2010).
[CrossRef] [PubMed]

S. Yu, Z. Yang, and S. Xu, “Judd-Ofelt and laser parameterization of Tm3+-doped barium gallo-germanate glass fabricated with efficient dehydration methods,” Opt. Mater.31(11), 1723–1728 (2009).
[CrossRef]

Yang, Z. M.

Yu, J.

Yu, S.

S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc.20(3), 745–751 (2010).
[CrossRef] [PubMed]

S. Yu, Z. Yang, and S. Xu, “Judd-Ofelt and laser parameterization of Tm3+-doped barium gallo-germanate glass fabricated with efficient dehydration methods,” Opt. Mater.31(11), 1723–1728 (2009).
[CrossRef]

Zhang, Q.

Zhang, Q. Y.

Zhang, W.

Zhang, W. N.

Zhang, X.

X. Zhang, L. Li, J. Cui, Y. Ju, and Y. Wang, “Single longitudinal mode and contiuously tunable frequency Tm, Ho:YLF laser with two solid etalons,” Laser Phys. Lett.7(3), 194–197 (2010).
[CrossRef]

Zyskind, J. L.

Appl. Opt.

IEEE Photon. Technol. Lett.

N. Y. Voo, J. K. Sahu, and M. Ibsen, “345 mW 1836 nm single-frequency DFB fiber laser MOPA,” IEEE Photon. Technol. Lett.17(12), 2550–2552 (2005).
[CrossRef]

H. Chen, F. Babin, M. Leblanc, and G. W. Schinn, “Widely tunable single-frequency Erbium-doped fiber laser,” IEEE Photon. Technol. Lett.15(2), 185–187 (2003).
[CrossRef]

P. Horak, N. Y. Voo, M. Ibsen, and W. H. Loh, “Pump-noise-induced linewidth contributions in distributed feedback fiber lasers,” IEEE Photon. Technol. Lett.18(9), 998–1000 (2006).
[CrossRef]

J. Fluoresc.

S. Yu, Z. Yang, and S. Xu, “Spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glass,” J. Fluoresc.20(3), 745–751 (2010).
[CrossRef] [PubMed]

J. Lightwave Technol.

Laser Phys. Lett.

C. Wu, Y. Ju, Z. Wang, Q. Wang, C. Song, and Y. Wang, “Diode-pumped single frequency Tm:YAG laser at room temperature,” Laser Phys. Lett.5(11), 793–796 (2008).
[CrossRef]

X. Zhang, L. Li, J. Cui, Y. Ju, and Y. Wang, “Single longitudinal mode and contiuously tunable frequency Tm, Ho:YLF laser with two solid etalons,” Laser Phys. Lett.7(3), 194–197 (2010).
[CrossRef]

Nat. Photonics

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics6(7), 423–431 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser,” Opt. Lett.36(18), 3708–3710 (2011).
[CrossRef] [PubMed]

Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett.20(8), 875–877 (1995).
[CrossRef] [PubMed]

S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett.29(13), 1503–1505 (2004).
[CrossRef] [PubMed]

J. Geng, J. Wu, S. Jiang, and J. Yu, “Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 micro m,” Opt. Lett.32(4), 355–357 (2007).
[CrossRef] [PubMed]

N. Coluccelli, G. Galzerano, D. Parisi, M. Tonelli, and P. Laporta, “Diode-pumped single-frequency Tm:LiLuF4 ring laser,” Opt. Lett.33(17), 1951–1953 (2008).
[CrossRef] [PubMed]

G. D. Goodno, L. D. Book, and J. E. Rothenberg, “Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier,” Opt. Lett.34(8), 1204–1206 (2009).
[CrossRef] [PubMed]

J. Geng, Q. Wang, T. Luo, S. Jiang, and F. Amzajerdian, “Single-frequency narrow-linewidth Tm-doped fiber laser using silicate glass fiber,” Opt. Lett.34(22), 3493–3495 (2009).
[CrossRef] [PubMed]

M. Horowitz, R. Daisy, B. Fischer, and J. L. Zyskind, “Linewidth-narrowing mechanism in lasers by nonlinear wave mixing,” Opt. Lett.19(18), 1406–1408 (1994).
[CrossRef] [PubMed]

Opt. Mater.

S. Yu, Z. Yang, and S. Xu, “Judd-Ofelt and laser parameterization of Tm3+-doped barium gallo-germanate glass fabricated with efficient dehydration methods,” Opt. Mater.31(11), 1723–1728 (2009).
[CrossRef]

Other

C. V. Poulsen, P. Varming, J. E. Pedersen, M. Beukema, and S. L. Lauridsen, “Applications of single frequency fiber lasers,” in Proceedings of the Conference on Lasers and Electro-Optics Europe, 2003 CLEO/Europe, 617 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Absorption cross section of single-mode Tm3+-doped germanate fiber; inset: the cross section of the germanate glass fiber. (b) Emission cross section of the germanate glass fiber.

Fig. 2
Fig. 2

Schematic of the Tm3+-doped narrow-linewidth single-frequency fiber laser.

Fig. 3
Fig. 3

(a) Spectrum of the Tm3+- doped germanate glass fiber laser. (b) 1.95 μm laser output power versus the absorbed pump power at 1568 nm.

Fig. 4
Fig. 4

(a) Longitudinal mode characteristics when only the FBG was used in the cavity. (b) Longitudinal mode characteristics when a 6.8 cm Tm3+-doped germanate fiber was used as the SA.

Fig. 5
Fig. 5

(a) Linewidth of the Tm3+-doped germanate glass fiber laser measured by the self-heterodyne method. (b) Frequency noise spectral density and the modulation index line β.

Fig. 6
Fig. 6

Optical spectra of the single-frequency all-fiber ring laser when tension is applied on the NB-FBG.

Metrics