Abstract

Triple mechanisms were employed to trap mid-infrared (mid-IR) rays within a semi-transparent SiO2 film sandwiched between gold gratings and a gold substrate. Dimensions of four absorbers were explicitly determined using an LC (inductor-capacitor) circuit model considering the role transition of SiO2 film. The film behaves as a capacitance and an inductance when the real part of relative electric permittivity for SiO2 is positive and negative, respectively. At the normal incidence of transverse magnetic waves, every absorptance spectrum of absorbers showed a peak at wavelength λ = 10 μm due to the first mode excitation of magnetic polaritons (MP). At oblique incidence, the Berreman mode led to another peak at λ = 8 μm while its bandwidth was expanded with epsilon near zero mode excited by diffracted waves. The full-width-at-half-maximum of both peaks exceeded 0.6 μm thanks to the SiO2 loss. Other minor absorptance peaks in the mid-IR were caused by variants of the same MP mode.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express18(6), 5525–5540 (2010).
    [CrossRef] [PubMed]
  2. S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett.100(2), 021111 (2012).
    [CrossRef]
  3. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993).
  4. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
    [CrossRef] [PubMed]
  5. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
    [CrossRef]
  6. X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
    [CrossRef] [PubMed]
  7. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
    [CrossRef]
  8. T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys.103(2), 023104 (2008).
    [CrossRef]
  9. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett.100(6), 063902 (2012).
    [CrossRef]
  10. G. G. Kang, I. Vartiainen, B. F. Bai, and J. Turunen, “Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating,” Opt. Express19(2), 770–778 (2011).
    [CrossRef] [PubMed]
  11. L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Perot cavity resonator,” J. Heat Transfer134(7), 072701 (2012).
    [CrossRef]
  12. H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng.15(9), S243–S249 (2005).
    [CrossRef]
  13. S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Long-range surface plasmon resonances in grating-waveguide structures,” Appl. Phys. Lett.70(10), 1210–1212 (1997).
    [CrossRef]
  14. J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B55(15), 10105–10114 (1997).
    [CrossRef]
  15. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express15(22), 14673–14678 (2007).
    [CrossRef] [PubMed]
  16. J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
    [CrossRef]
  17. Y.-B. Chen, J.-S. Chen, and P. F. Hsu, “Impacts of geometric modifications on infrared optical responses of metallic slit arrays,” Opt. Express17(12), 9789–9803 (2009).
    [CrossRef] [PubMed]
  18. C. G. Hu, L. Y. Liu, Z. Y. Zhao, X. N. Chen, and X. G. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express17(19), 16745–16749 (2009).
    [CrossRef] [PubMed]
  19. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37(2), 154–156 (2012).
    [CrossRef] [PubMed]
  20. J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026603 (2011).
    [CrossRef] [PubMed]
  21. J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012).
    [CrossRef] [PubMed]
  22. C. J. Chen, J. S. Chen, and Y. B. Chen, “Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton,” J. Opt. Soc. Am. B28(8), 1798–1806 (2011).
    [CrossRef]
  23. C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
    [CrossRef]
  24. S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
    [CrossRef] [PubMed]
  25. S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express20(21), 23971–23977 (2012).
    [CrossRef] [PubMed]
  26. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” J. Opt. Soc. Am. A18(9), 2109–2120 (2001).
    [CrossRef] [PubMed]
  27. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express16(15), 11328–11336 (2008).
    [CrossRef] [PubMed]
  28. Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express17(16), 13526–13531 (2009).
    [CrossRef] [PubMed]
  29. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
    [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  31. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  32. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  33. B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer19, 558–565 (2005).
  34. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  35. L. P. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B27(12), 2595–2604 (2010).
    [CrossRef]
  36. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
    [CrossRef] [PubMed]
  37. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys.68(2), 449–521 (2005).
    [CrossRef]
  38. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
    [CrossRef] [PubMed]
  39. Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer129(1), 79–90 (2007).
    [CrossRef]

2012 (7)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett.100(6), 063902 (2012).
[CrossRef]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Perot cavity resonator,” J. Heat Transfer134(7), 072701 (2012).
[CrossRef]

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett.100(2), 021111 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37(2), 154–156 (2012).
[CrossRef] [PubMed]

J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012).
[CrossRef] [PubMed]

S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express20(21), 23971–23977 (2012).
[CrossRef] [PubMed]

2011 (4)

G. G. Kang, I. Vartiainen, B. F. Bai, and J. Turunen, “Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating,” Opt. Express19(2), 770–778 (2011).
[CrossRef] [PubMed]

C. J. Chen, J. S. Chen, and Y. B. Chen, “Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton,” J. Opt. Soc. Am. B28(8), 1798–1806 (2011).
[CrossRef]

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026603 (2011).
[CrossRef] [PubMed]

2010 (5)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express18(6), 5525–5540 (2010).
[CrossRef] [PubMed]

L. P. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B27(12), 2595–2604 (2010).
[CrossRef]

2009 (5)

2008 (2)

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys.103(2), 023104 (2008).
[CrossRef]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express16(15), 11328–11336 (2008).
[CrossRef] [PubMed]

2007 (4)

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer129(1), 79–90 (2007).
[CrossRef]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

2005 (4)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys.68(2), 449–521 (2005).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer19, 558–565 (2005).

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng.15(9), S243–S249 (2005).
[CrossRef]

2001 (1)

1997 (2)

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Long-range surface plasmon resonances in grating-waveguide structures,” Appl. Phys. Lett.70(10), 1210–1212 (1997).
[CrossRef]

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B55(15), 10105–10114 (1997).
[CrossRef]

1983 (1)

Abbas, M. N.

Agrawal, M.

Alexander, R. W.

Asano, T.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Bai, B. F.

Basu, S.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Perot cavity resonator,” J. Heat Transfer134(7), 072701 (2012).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Cai, G. W.

Chang, Y. C.

Chang, Y. T.

Chen, C. J.

Chen, C. Y.

Chen, H. T.

Chen, J.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026603 (2011).
[CrossRef] [PubMed]

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Chen, J. S.

Chen, J.-S.

Chen, X. N.

Chen, Y. B.

C. J. Chen, J. S. Chen, and Y. B. Chen, “Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton,” J. Opt. Soc. Am. B28(8), 1798–1806 (2011).
[CrossRef]

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer129(1), 79–90 (2007).
[CrossRef]

Chen, Y.-B.

Cheng, C.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Cheng, Y. G.

Chettiar, U. K.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Chowdhury, D. R.

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

De Zoysa, M.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

DeWitt, D. P.

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer19, 558–565 (2005).

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

Ding, P.

Drachev, V. P.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Dunn, S. C.

Early, E. A.

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer19, 558–565 (2005).

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

Fan, C. Z.

Fan, Y. X.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Friesem, A. A.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Long-range surface plasmon resonances in grating-waveguide structures,” Appl. Phys. Lett.70(10), 1210–1212 (1997).
[CrossRef]

Fukushima, N.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett.100(2), 021111 (2012).
[CrossRef]

Glasberg, S.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Long-range surface plasmon resonances in grating-waveguide structures,” Appl. Phys. Lett.70(10), 1210–1212 (1997).
[CrossRef]

Greffet, J. J.

S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express20(21), 23971–23977 (2012).
[CrossRef] [PubMed]

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B55(15), 10105–10114 (1997).
[CrossRef]

Hao, J. M.

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

He, J. N.

Hsu, P. F.

Hu, C. G.

Hu, W. Q.

Huang, L.

Hugonin, J. P.

Inoue, T.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Jacob, D. K.

Jiang, Y. W.

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng.15(9), S243–S249 (2005).
[CrossRef]

Kang, G. G.

Kildishev, A. V.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Kimata, M.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett.100(2), 021111 (2012).
[CrossRef]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Le Gall, J.

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B55(15), 10105–10114 (1997).
[CrossRef]

Lee, B. J.

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express16(15), 11328–11336 (2008).
[CrossRef] [PubMed]

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer19, 558–565 (2005).

Lee, S. C.

Li, J. Q.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys.103(2), 023104 (2008).
[CrossRef]

Li, T.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys.103(2), 023104 (2008).
[CrossRef]

Liang, E. J.

Liu, H.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys.103(2), 023104 (2008).
[CrossRef]

Liu, L. Y.

Liu, X. L.

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

Long, L. L.

Lu, Y.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026603 (2011).
[CrossRef] [PubMed]

Luo, S. N.

Luo, X. G.

Marquier, F.

Ming, H.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026603 (2011).
[CrossRef] [PubMed]

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Moharam, M. G.

Ni, X. J.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Noda, S.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Ogawa, S.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett.100(2), 021111 (2012).
[CrossRef]

Okada, K.

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett.100(2), 021111 (2012).
[CrossRef]

Olivier, M.

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B55(15), 10105–10114 (1997).
[CrossRef]

Ordal, M. A.

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Padilla, W. J.

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Peumans, P.

Qiu, M.

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys.68(2), 449–521 (2005).
[CrossRef]

Ramani, S.

Reiten, M. T.

Ren, F. F.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Rosenblatt, D.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Long-range surface plasmon resonances in grating-waveguide structures,” Appl. Phys. Lett.70(10), 1210–1212 (1997).
[CrossRef]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng.15(9), S243–S249 (2005).
[CrossRef]

Sergeant, N. P.

Shalaev, V. M.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Sharon, A.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Long-range surface plasmon resonances in grating-waveguide structures,” Appl. Phys. Lett.70(10), 1210–1212 (1997).
[CrossRef]

Shih, M. H.

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Starr, A. F.

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

Starr, T.

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Taylor, A. J.

Timans, P. J.

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer129(1), 79–90 (2007).
[CrossRef]

Tsai, B. K.

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer19, 558–565 (2005).

Tsai, D. P.

Tsai, M. W.

Turunen, J.

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Vartiainen, I.

Vassant, S.

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Wang, C. M.

Wang, F. M.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys.103(2), 023104 (2008).
[CrossRef]

Wang, H. T.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Wang, J. Q.

Wang, L. P.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Perot cavity resonator,” J. Heat Transfer134(7), 072701 (2012).
[CrossRef]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett.100(6), 063902 (2012).
[CrossRef]

L. P. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B27(12), 2595–2604 (2010).
[CrossRef]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express16(15), 11328–11336 (2008).
[CrossRef] [PubMed]

Wang, P.

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026603 (2011).
[CrossRef] [PubMed]

Wang, S. M.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys.103(2), 023104 (2008).
[CrossRef]

Ward, C. A.

Wu, Q. Y.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Xiao, S. M.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Xu, J.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

Xue, Q. Z.

Ye, Y. H.

Yuan, H. K.

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng.15(9), S243–S249 (2005).
[CrossRef]

Zhang, X.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys.103(2), 023104 (2008).
[CrossRef]

Zhang, Z. M.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett.100(6), 063902 (2012).
[CrossRef]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Perot cavity resonator,” J. Heat Transfer134(7), 072701 (2012).
[CrossRef]

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026603 (2011).
[CrossRef] [PubMed]

L. P. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B27(12), 2595–2604 (2010).
[CrossRef]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express16(15), 11328–11336 (2008).
[CrossRef] [PubMed]

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer129(1), 79–90 (2007).
[CrossRef]

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer19, 558–565 (2005).

Zhao, Z. Y.

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Zhou, L.

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Zhu, S. N.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys.103(2), 023104 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. Ogawa, K. Okada, N. Fukushima, and M. Kimata, “Wavelength selective uncooled infrared sensor by plasmonics,” Appl. Phys. Lett.100(2), 021111 (2012).
[CrossRef]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett.100(6), 063902 (2012).
[CrossRef]

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Long-range surface plasmon resonances in grating-waveguide structures,” Appl. Phys. Lett.70(10), 1210–1212 (1997).
[CrossRef]

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, “Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits,” Appl. Phys. Lett.91(11), 111111 (2007).
[CrossRef]

J. Appl. Phys. (1)

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys.103(2), 023104 (2008).
[CrossRef]

J. Heat Transfer (2)

Y. B. Chen, Z. M. Zhang, and P. J. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer129(1), 79–90 (2007).
[CrossRef]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry-Perot cavity resonator,” J. Heat Transfer134(7), 072701 (2012).
[CrossRef]

J. Micromech. Microeng. (1)

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng.15(9), S243–S249 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Thermophys. Heat Transfer (1)

B. J. Lee, Z. M. Zhang, E. A. Early, D. P. DeWitt, and B. K. Tsai, “Modeling radiative properties of silicon with coatings and comparison with reflectance measurements,” J. Thermophys. Heat Transfer19, 558–565 (2005).

Nat. Photonics (1)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics6(8), 535–539 (2012).
[CrossRef]

Nature (1)

S. M. Xiao, V. P. Drachev, A. V. Kildishev, X. J. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010).
[CrossRef] [PubMed]

Opt. Express (9)

G. G. Kang, I. Vartiainen, B. F. Bai, and J. Turunen, “Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating,” Opt. Express19(2), 770–778 (2011).
[CrossRef] [PubMed]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express16(15), 11328–11336 (2008).
[CrossRef] [PubMed]

Y.-B. Chen, J.-S. Chen, and P. F. Hsu, “Impacts of geometric modifications on infrared optical responses of metallic slit arrays,” Opt. Express17(12), 9789–9803 (2009).
[CrossRef] [PubMed]

Y. C. Chang, C. M. Wang, M. N. Abbas, M. H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express17(16), 13526–13531 (2009).
[CrossRef] [PubMed]

C. G. Hu, L. Y. Liu, Z. Y. Zhao, X. N. Chen, and X. G. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express17(19), 16745–16749 (2009).
[CrossRef] [PubMed]

N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express18(6), 5525–5540 (2010).
[CrossRef] [PubMed]

J. Q. Wang, C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012).
[CrossRef] [PubMed]

S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express20(21), 23971–23977 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (4)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79(3), 033101 (2009).
[CrossRef]

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B55(15), 10105–10114 (1997).
[CrossRef]

J. M. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Chen, P. Wang, Z. M. Zhang, Y. Lu, and H. Ming, “Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(2), 026603 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys.68(2), 449–521 (2005).
[CrossRef]

Science (2)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329(5994), 930–933 (2010).
[CrossRef] [PubMed]

Other (4)

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Optical constants of Au and SiO2; (b) The angle of refraction (θr) and reflectance spectra of a semi-infinite SiO2 substrate at the TE and TM wave incidence of λ = 8.0 μm.

Fig. 2
Fig. 2

(a) The absorptance by a semi-infinite SiO2 substrate, a free-standing 200-nm-thick SiO2 film, and a 200-nm-thick SiO2 film on an Au substrate at the TM wave incidence of λ = 8.0 μm; (b) The absorptance of TE and TM waves from the base of absorbers at θ = 0°, 30°, and 45°.

Fig. 3
Fig. 3

The schematic of absorber baseline and its equivalent LC circuits.

Fig. 4
Fig. 4

The absorptance from four identified absorbers at the TM wave incidence of: (a) θ = 0°; (b) θ = 30°; (c) θ = 45°.

Fig. 5
Fig. 5

(a) The EM field patterns and (b) Poynting vectors of the absorber I when the MP1 is excited (λ = 10.36 μm) at θ = 0°. Arrowheads in (a) represent the normalized electric field vectors.

Fig. 6
Fig. 6

(a) The EM field patterns and (b) Poynting vectors of the absorber I as the wave guide mode (λ = 8.0 μm) occurs at θ = 45°.

Fig. 7
Fig. 7

The EM field patterns of the absorber I at θ = 45° for the incidence of wavelengths: (a) λ = 8.1 μm (n = 0.398 and κ = 0.504); (b) λ = 8.5 μm (n = 0.472 and κ = 0.929); (c) λ = 9.1 μm (n = 1.105 and κ = 2.559); (d) λ = 9.5 μm (n = 2.705 and κ = 1.716).

Fig. 8
Fig. 8

At θ = 0°, the EM field patterns of the absorber I at the excitation of: (a) MP1 variant (λ = 6.53 μm); (b) MP3 (λ = 2.17 μm).

Fig. 9
Fig. 9

At θ = 45°, the EM field patterns of the absorber I at the excitation of: (a) MP1 (λ = 10.29 μm); (b) MP1 variant (λ = 5.96 μm); (c) MP2 (λ = 3.16 μm); (d) MP3 (λ = 1.75 μm).

Fig. 10
Fig. 10

The absorptance contours from structures of various w (from 0 to 5 μm) at (a) θ = 0° and (b) θ = 45°. The vertical blue line specifies the absorptance spectrum from absorber I. The flipped curves with triangle markers are MP1 resonance wavelengths predicted from the LC circuit model. Three modes of MP (MP1, MP2, and MP3) are identified with modeling results and are designated in figures by circles, diamonds, and squares, respectively. They are not like flipped curves from the LC circuit model.

Tables (1)

Tables Icon

Table 1 Dimensions of Developed Absorbers from the LC Circuit Model

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε= ε ω p 2 ω 2 +iω ω τ
ptan θ r =n Air sinθ
p 2 = 1 2 [ ( n SiO2 2 κ SiO2 2 n Air 2 sin 2 θ ) 2 +4 n SiO2 2 κ SiO2 2 +( n SiO2 2 κ SiO2 2 n Air 2 sin 2 θ ) ]
Z tot = ( L m + L e ) 1 ω 2 C e ( L m + L e ) 2 ω 2 C m +( L m + L e )
Z tot = ( L m + L e ) 1 ω 2 C e ( L m + L e ) +2 L e .+( L m + L e )
c 1 π ε d ε 0 2 ω 4 w 3 d 2 ln( b/ d 1 ) ( μ 0 d 2 2 + 1 γ d 1 ε 0 ω p 2 ) 2 c 1 ε d ω 2 w 2 ( 2 γ d 1 d 2 ω p 2 + ε 0 μ 0 ) π ω 2 w ln( b/ d 1 ) ( ε 0 μ 0 d 2 + 2 γ d 1 ω p 2 )=2

Metrics