Abstract

We propose a novel metal-insulator-metal (MIM) waveguide mode transition scheme by the use of the abrupt junction of MIM plasmonic waveguide. Power coupling between anti-symmetric plasmonic mode and fundamental photonic mode can be easily done by reflection at the waveguide junction with an oblique MIM mode incidence due to the field intersection between those modes. With numerical simulation we find that mode conversion efficiency can be obtained up to 60% for single junction geometry, and it can be further increased up to 82% with the suppression of non-transited mode by adapting Bragg grating structure composed of periodical arranges of MIM junctions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
    [CrossRef]
  4. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chipscale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
    [CrossRef]
  5. J. Park, H. Kim, I.-M. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express16(21), 16903–16915 (2008).
    [CrossRef] [PubMed]
  6. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express16(1), 413–425 (2008).
    [CrossRef] [PubMed]
  7. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
    [CrossRef] [PubMed]
  8. J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010).
    [CrossRef] [PubMed]
  9. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
    [CrossRef] [PubMed]
  10. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett.96(7), 073907 (2006).
    [CrossRef] [PubMed]
  11. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
    [CrossRef] [PubMed]
  12. Y. Lim, S.-Y. Lee, K.-Y. Kim, J. Park, and B. Lee, “Negative refraction of Airy plasmons in a metal-insulator-metal waveguide,” IEEE Photon. Technol. Lett.23(17), 1258–1260 (2011).
    [CrossRef]
  13. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
    [CrossRef] [PubMed]
  14. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10(12), 4851–4857 (2010).
    [CrossRef] [PubMed]
  15. S.-Y. Lee, J. Park, M. Kang, and B. Lee, “Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides,” Opt. Express19(10), 9562–9574 (2011).
    [CrossRef] [PubMed]
  16. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett.12(5), 2494–2498 (2012).
    [CrossRef] [PubMed]
  17. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
    [CrossRef]
  18. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
    [CrossRef] [PubMed]
  19. H. Kim and B. Lee, “Efficient frequency conversion in slab waveguide by cascaded nonreciprocal interband photonic transitions,” Opt. Lett.35(19), 3165–3167 (2010).
    [CrossRef] [PubMed]
  20. S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express17(14), 11267–11273 (2009).
    [CrossRef] [PubMed]
  21. R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett.10(11), 4394–4398 (2010).
    [CrossRef] [PubMed]
  22. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  23. M. A. Ordal, R. J. Bell, R. W. Alexander,, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24(24), 4493–4499 (1985).
    [CrossRef] [PubMed]
  24. T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, and B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access1, 371–383 (2013).
    [CrossRef]
  25. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express16(19), 14902–14909 (2008).
    [CrossRef] [PubMed]
  26. S.-Y. Lee, J. Park, I. Woo, N. Park, and B. Lee, “Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap,” Appl. Phys. Lett.97(13), 133113 (2010).
    [CrossRef]
  27. H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A24(8), 2313–2327 (2007).
    [CrossRef] [PubMed]
  28. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC Press, 2012).

2013 (1)

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, and B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access1, 371–383 (2013).
[CrossRef]

2012 (2)

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett.12(5), 2494–2498 (2012).
[CrossRef] [PubMed]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

2011 (2)

Y. Lim, S.-Y. Lee, K.-Y. Kim, J. Park, and B. Lee, “Negative refraction of Airy plasmons in a metal-insulator-metal waveguide,” IEEE Photon. Technol. Lett.23(17), 1258–1260 (2011).
[CrossRef]

S.-Y. Lee, J. Park, M. Kang, and B. Lee, “Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides,” Opt. Express19(10), 9562–9574 (2011).
[CrossRef] [PubMed]

2010 (6)

S.-Y. Lee, J. Park, I. Woo, N. Park, and B. Lee, “Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap,” Appl. Phys. Lett.97(13), 133113 (2010).
[CrossRef]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10(12), 4851–4857 (2010).
[CrossRef] [PubMed]

H. Kim and B. Lee, “Efficient frequency conversion in slab waveguide by cascaded nonreciprocal interband photonic transitions,” Opt. Lett.35(19), 3165–3167 (2010).
[CrossRef] [PubMed]

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett.10(11), 4394–4398 (2010).
[CrossRef] [PubMed]

J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010).
[CrossRef] [PubMed]

2009 (4)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express17(14), 11267–11273 (2009).
[CrossRef] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

2008 (3)

2007 (3)

H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A24(8), 2313–2327 (2007).
[CrossRef] [PubMed]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[CrossRef] [PubMed]

2006 (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chipscale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett.96(7), 073907 (2006).
[CrossRef] [PubMed]

2005 (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1985 (1)

Alexander,, R. W.

Ameling, R.

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett.10(11), 4394–4398 (2010).
[CrossRef] [PubMed]

Atwater, H. A.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10(12), 4851–4857 (2010).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chipscale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Bell, R. J.

Blaize, S.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Briggs, R. M.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10(12), 4851–4857 (2010).
[CrossRef] [PubMed]

Brueck, S. R. J.

Bruyant, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Burgos, S. P.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10(12), 4851–4857 (2010).
[CrossRef] [PubMed]

Chelnokov, A.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Chen, J.

Cho, S.-W.

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, and B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access1, 371–383 (2013).
[CrossRef]

Chung, T.

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, and B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access1, 371–383 (2013).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Delacour, C.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chipscale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fan, S.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett.96(7), 073907 (2006).
[CrossRef] [PubMed]

Fedeli, J. M.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Feigenbaum, E.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10(12), 4851–4857 (2010).
[CrossRef] [PubMed]

Giessen, H.

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett.10(11), 4394–4398 (2010).
[CrossRef] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Gong, Q.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett.12(5), 2494–2498 (2012).
[CrossRef] [PubMed]

Grandidier, J.

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10(12), 4851–4857 (2010).
[CrossRef] [PubMed]

Grosse, P.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Jung, J.

Kang, M.

Kim, H.

Kim, K.-Y.

Y. Lim, S.-Y. Lee, K.-Y. Kim, J. Park, and B. Lee, “Negative refraction of Airy plasmons in a metal-insulator-metal waveguide,” IEEE Photon. Technol. Lett.23(17), 1258–1260 (2011).
[CrossRef]

J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010).
[CrossRef] [PubMed]

Kim, S.

Kim, S.-H.

Lee, B.

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, and B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access1, 371–383 (2013).
[CrossRef]

Y. Lim, S.-Y. Lee, K.-Y. Kim, J. Park, and B. Lee, “Negative refraction of Airy plasmons in a metal-insulator-metal waveguide,” IEEE Photon. Technol. Lett.23(17), 1258–1260 (2011).
[CrossRef]

S.-Y. Lee, J. Park, M. Kang, and B. Lee, “Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides,” Opt. Express19(10), 9562–9574 (2011).
[CrossRef] [PubMed]

H. Kim and B. Lee, “Efficient frequency conversion in slab waveguide by cascaded nonreciprocal interband photonic transitions,” Opt. Lett.35(19), 3165–3167 (2010).
[CrossRef] [PubMed]

J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010).
[CrossRef] [PubMed]

S.-Y. Lee, J. Park, I. Woo, N. Park, and B. Lee, “Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap,” Appl. Phys. Lett.97(13), 133113 (2010).
[CrossRef]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express16(1), 413–425 (2008).
[CrossRef] [PubMed]

J. Park, H. Kim, I.-M. Lee, S. Kim, J. Jung, and B. Lee, “Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity,” Opt. Express16(21), 16903–16915 (2008).
[CrossRef] [PubMed]

H. Kim, I.-M. Lee, and B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A24(8), 2313–2327 (2007).
[CrossRef] [PubMed]

Lee, I.-M.

Lee, S.-Y.

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, and B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access1, 371–383 (2013).
[CrossRef]

S.-Y. Lee, J. Park, M. Kang, and B. Lee, “Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides,” Opt. Express19(10), 9562–9574 (2011).
[CrossRef] [PubMed]

Y. Lim, S.-Y. Lee, K.-Y. Kim, J. Park, and B. Lee, “Negative refraction of Airy plasmons in a metal-insulator-metal waveguide,” IEEE Photon. Technol. Lett.23(17), 1258–1260 (2011).
[CrossRef]

J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express18(2), 598–623 (2010).
[CrossRef] [PubMed]

S.-Y. Lee, J. Park, I. Woo, N. Park, and B. Lee, “Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap,” Appl. Phys. Lett.97(13), 133113 (2010).
[CrossRef]

Lerondel, G.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Li, Z.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett.12(5), 2494–2498 (2012).
[CrossRef] [PubMed]

Lim, Y.

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, and B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access1, 371–383 (2013).
[CrossRef]

Y. Lim, S.-Y. Lee, K.-Y. Kim, J. Park, and B. Lee, “Negative refraction of Airy plasmons in a metal-insulator-metal waveguide,” IEEE Photon. Technol. Lett.23(17), 1258–1260 (2011).
[CrossRef]

Lipson, M.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Lira, H.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Long, L. L.

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Malloy, K. J.

Mizumoto, T.

Na, H.

Ordal, M. A.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Park, J.

Park, N.

S.-Y. Lee, J. Park, I. Woo, N. Park, and B. Lee, “Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap,” Appl. Phys. Lett.97(13), 133113 (2010).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chipscale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Querry, M. R.

Salas-Montiel, R.

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

Shin, H.

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett.96(7), 073907 (2006).
[CrossRef] [PubMed]

Shoji, Y.

Smolyakov, G. A.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chipscale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Takei, R.

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Woo, I.

S.-Y. Lee, J. Park, I. Woo, N. Park, and B. Lee, “Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap,” Appl. Phys. Lett.97(13), 133113 (2010).
[CrossRef]

Xiao, J.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett.12(5), 2494–2498 (2012).
[CrossRef] [PubMed]

Yu, Z.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

Yue, S.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett.12(5), 2494–2498 (2012).
[CrossRef] [PubMed]

Yun, H.

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, and B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access1, 371–383 (2013).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S.-Y. Lee, J. Park, I. Woo, N. Park, and B. Lee, “Surface plasmon beam splitting by the photon tunneling through the plasmonic nanogap,” Appl. Phys. Lett.97(13), 133113 (2010).
[CrossRef]

IEEE Access (1)

T. Chung, S.-Y. Lee, H. Yun, S.-W. Cho, Y. Lim, I.-M. Lee, and B. Lee, “Plasmonics in nanoslit for manipulation of light,” IEEE Access1, 371–383 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Lim, S.-Y. Lee, K.-Y. Kim, J. Park, and B. Lee, “Negative refraction of Airy plasmons in a metal-insulator-metal waveguide,” IEEE Photon. Technol. Lett.23(17), 1258–1260 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (5)

R. Ameling and H. Giessen, “Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity,” Nano Lett.10(11), 4394–4398 (2010).
[CrossRef] [PubMed]

C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett.10(8), 2922–2926 (2010).
[CrossRef] [PubMed]

R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. A. Atwater, “Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides,” Nano Lett.10(12), 4851–4857 (2010).
[CrossRef] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett.12(5), 2494–2498 (2012).
[CrossRef] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009).
[CrossRef]

Nature (3)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chipscale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett.96(7), 073907 (2006).
[CrossRef] [PubMed]

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett.109(3), 033901 (2012).
[CrossRef] [PubMed]

Science (1)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Other (2)

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC Press, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A configuration of proposed plasmonic-photonic mode conversion scheme based on a MIM waveguide junction. (b) Dispersion curves for possible modes existing in Layer A (blue lines) and Layer B (red lines) are shown. The plasma frequency (ωp) and damping coefficient of silver are set to 9 eV and 18 meV, respectively [23] (εmetal = −13.9 + 0.12i, at 532 nm). (c) Electric field intensity distribution for PLanti Gaussian beam incidence with θinc = 20° is shown. To clearly show the propagation direction of beam, we intentionally remove the metallic loss for this figure.

Fig. 2
Fig. 2

(a) Calculated reflected power to each mode at the single junction with oblique PLanti mode incidence. Reflected field distributions near the junction are illustrated to show coupling characteristics of (b) PLanti and (c) PT modes from PLanti mode incidence at the incidence angle of 20°. Field distributions at the same conditions except for incidence angle of 40° are shown for (d) PLanti and (e) PT modes.

Fig. 3
Fig. 3

(a) Calculated reflected power to each mode at the single junction with oblique PT mode incidence. Reflected field distributions near the junction are illustrated to show coupling characteristics of (b) PLanti and (c) PT modes from PT mode incidence at the incidence angle of 52°.

Fig. 4
Fig. 4

(a) Configuration of plasmonic-photonic mode conversion scheme based on MIM waveguide Bragg reflector. Reflected powers to each mode varying with the LA are shown with oblique (b) PLanti and (c) PT mode incidences. (d) Electric field intensity distribution near the junction at the condition of LA = 150 nm, θinc = 24.6°, and PT mode incidence (metallic loss ignored).

Fig. 5
Fig. 5

Reflected powers to (a) PLanti mode and (b) PT mode for PLanti mode incidence varying with the LA and incident angle are shown in two-dimensional map.

Tables (1)

Tables Icon

Table 1 Field Symmetries of PLsymm, PLanti, and PT Modes (Oblique Incidence Along y-z Plane)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θ c = sin 1 ( n PT / n PLa ).
Λ PLaPLa = λ 0 n PLa cos θ PLa .
Λ PLaPT = λ 0 | n PLa cos θ PLa n PT cos θ PT | .
Λ PTPT = λ 0 n PT cos θ PT

Metrics