Abstract

The huge power solid-state lasers require large optical materials with high quality. The inhomogeneity must be required to be measured. Inhomogeneity measurement is often done at normal incidence by interferometer, while the size of large blanks is limited to the interferometer aperture. A five-step method to measure refractive index inhomogeneity over the interferometer aperture is proposed in this paper. The variation of the refractive index inhomogeneity of the glass blank is directly calculated using five interferograms measured at oblique incidence. The high repeatability of the results is given. The reliability of the method is further verified by comparing the same part measured at normal incidence.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
    [CrossRef]
  2. W. H. Williams, “NIF Large optics metrology software: description and algorithms,” UCRL-MA-137950-REV-1(2002).
  3. F. Twyman and J. W. Perry, “The determination of Poisson’s ratio and of the absolute stress-variation of refractive index,” Proc. Phys. Soc. Lond.34(1), 151–154 (1921).
    [CrossRef]
  4. F. E. Roberts and P. Langenbeck, “Homogeneity evaluation of very large disks,” Appl. Opt.8(11), 2311–2314 (1969).
    [CrossRef] [PubMed]
  5. J. Schwider, R. Burow, K.-E. Elssner, R. Spolaczyk, and J. Grzanna, “Homogeneity testing by phase sampling interferometry,” Appl. Opt.24(18), 3059–3061 (1985).
    [CrossRef] [PubMed]
  6. L. L. Deck, “Multiple surface phase shifting interferometry,” Proc. SPIE4451, 424–431 (2001).
    [CrossRef]
  7. J. Park, L. Chen, Q. Wang, and U. Griesmann, “Modified Roberts-Langenbeck test for measuring thickness and refractive index variation of silicon wafers,” Opt. Express20(18), 20078–20089 (2012).
    [CrossRef] [PubMed]
  8. D. Schönfeld, T. Reuter, R. Takke, and S. Thomas, “Stitching oil-on interferometry of large fused silica blanks,” Proc. SPIE5965, 59650V, 59650V-8 (2005).
    [CrossRef]
  9. R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE7018, 70180O, 70180O-10 (2008).
    [CrossRef]
  10. D. M. Aikens, “Origin and evolution of the optics specifications for the National Ignition Facility,” Proc. SPIE2536, 2–12 (1995).
    [CrossRef]
  11. SCHOTT Technical Information: TIE-26 - Homogeneity of optical glass, 6 (2004).

2012 (1)

2008 (1)

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE7018, 70180O, 70180O-10 (2008).
[CrossRef]

2005 (1)

D. Schönfeld, T. Reuter, R. Takke, and S. Thomas, “Stitching oil-on interferometry of large fused silica blanks,” Proc. SPIE5965, 59650V, 59650V-8 (2005).
[CrossRef]

2004 (1)

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

2001 (1)

L. L. Deck, “Multiple surface phase shifting interferometry,” Proc. SPIE4451, 424–431 (2001).
[CrossRef]

1995 (1)

D. M. Aikens, “Origin and evolution of the optics specifications for the National Ignition Facility,” Proc. SPIE2536, 2–12 (1995).
[CrossRef]

1985 (1)

1969 (1)

1921 (1)

F. Twyman and J. W. Perry, “The determination of Poisson’s ratio and of the absolute stress-variation of refractive index,” Proc. Phys. Soc. Lond.34(1), 151–154 (1921).
[CrossRef]

Aikens, D. M.

D. M. Aikens, “Origin and evolution of the optics specifications for the National Ignition Facility,” Proc. SPIE2536, 2–12 (1995).
[CrossRef]

Borden, M. R.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

Burow, R.

Campbell, J. H.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

Chen, L.

Deck, L. L.

L. L. Deck, “Multiple surface phase shifting interferometry,” Proc. SPIE4451, 424–431 (2001).
[CrossRef]

Döhring, T.

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE7018, 70180O, 70180O-10 (2008).
[CrossRef]

Elsmann, F.

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE7018, 70180O, 70180O-10 (2008).
[CrossRef]

Elssner, K.-E.

Feit, M.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

Griesmann, U.

Grzanna, J.

Hackel, R.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

Hartmann, P.

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE7018, 70180O, 70180O-10 (2008).
[CrossRef]

Hawley-Fedder, R.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

Hengst, J.

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE7018, 70180O, 70180O-10 (2008).
[CrossRef]

Jedamzik, R.

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE7018, 70180O, 70180O-10 (2008).
[CrossRef]

Langenbeck, P.

Lemke, C.

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE7018, 70180O, 70180O-10 (2008).
[CrossRef]

Menapace, J. A.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

Park, J.

Perry, J. W.

F. Twyman and J. W. Perry, “The determination of Poisson’s ratio and of the absolute stress-variation of refractive index,” Proc. Phys. Soc. Lond.34(1), 151–154 (1921).
[CrossRef]

Reuter, T.

D. Schönfeld, T. Reuter, R. Takke, and S. Thomas, “Stitching oil-on interferometry of large fused silica blanks,” Proc. SPIE5965, 59650V, 59650V-8 (2005).
[CrossRef]

Riley, M.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

Roberts, F. E.

Runkel, M.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

Schönfeld, D.

D. Schönfeld, T. Reuter, R. Takke, and S. Thomas, “Stitching oil-on interferometry of large fused silica blanks,” Proc. SPIE5965, 59650V, 59650V-8 (2005).
[CrossRef]

Schwider, J.

Spolaczyk, R.

Stolz, C. J.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

Takke, R.

D. Schönfeld, T. Reuter, R. Takke, and S. Thomas, “Stitching oil-on interferometry of large fused silica blanks,” Proc. SPIE5965, 59650V, 59650V-8 (2005).
[CrossRef]

Thomas, S.

D. Schönfeld, T. Reuter, R. Takke, and S. Thomas, “Stitching oil-on interferometry of large fused silica blanks,” Proc. SPIE5965, 59650V, 59650V-8 (2005).
[CrossRef]

Twyman, F.

F. Twyman and J. W. Perry, “The determination of Poisson’s ratio and of the absolute stress-variation of refractive index,” Proc. Phys. Soc. Lond.34(1), 151–154 (1921).
[CrossRef]

Wang, Q.

Whitman, P.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

Yu, J.

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

Appl. Opt. (2)

Opt. Express (1)

Proc. Phys. Soc. Lond. (1)

F. Twyman and J. W. Perry, “The determination of Poisson’s ratio and of the absolute stress-variation of refractive index,” Proc. Phys. Soc. Lond.34(1), 151–154 (1921).
[CrossRef]

Proc. SPIE (5)

D. Schönfeld, T. Reuter, R. Takke, and S. Thomas, “Stitching oil-on interferometry of large fused silica blanks,” Proc. SPIE5965, 59650V, 59650V-8 (2005).
[CrossRef]

R. Jedamzik, J. Hengst, F. Elsmann, C. Lemke, T. Döhring, and P. Hartmann, “Optical materials for astronomy from SCHOTT: the quality of large components,” Proc. SPIE7018, 70180O, 70180O-10 (2008).
[CrossRef]

D. M. Aikens, “Origin and evolution of the optics specifications for the National Ignition Facility,” Proc. SPIE2536, 2–12 (1995).
[CrossRef]

J. H. Campbell, R. Hawley-Fedder, C. J. Stolz, J. A. Menapace, M. R. Borden, P. Whitman, J. Yu, M. Runkel, M. Riley, M. Feit, and R. Hackel, “NIF Optical materials and fabrication technologies: an overview,” Proc. SPIE5341, 84–101 (2004).
[CrossRef]

L. L. Deck, “Multiple surface phase shifting interferometry,” Proc. SPIE4451, 424–431 (2001).
[CrossRef]

Other (2)

W. H. Williams, “NIF Large optics metrology software: description and algorithms,” UCRL-MA-137950-REV-1(2002).

SCHOTT Technical Information: TIE-26 - Homogeneity of optical glass, 6 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Five-step procedure for inhomogeneity evaluations at oblique angle.

Fig. 2
Fig. 2

Points of front and back surfaces relative to same coordinate of interferogram.

Fig. 3
Fig. 3

Wavefront results of C (a), T1 (b), T2 (c), A (d) and B (e) from five-step measurement.

Fig. 4
Fig. 4

Homogeneity map Δn2 at 28 degree incidence.

Fig. 5
Fig. 5

Wavefront result of C′ (a), T′ (b), A′ (c), B′ (d) from four-step measurement.

Fig. 6
Fig. 6

Homogeneity map measured at normal incidence.

Fig. 7
Fig. 7

Measurement zones of the test part with (a) normal incidence (b) oblique incidence.

Fig. 8
Fig. 8

Wavefront map measured at normal incidence. The wavefront map is homogeneity map multiplied by depth d and divided by cosθ′. The aperture is 350mm × 400mm excluding edge influence. The right curves are wavefront profiles at sampled lines. The up curve is the wavefront profile at x-line and the down curve is the wavefront profile at y-line. The PV and rms values below the curves are corresponded to x-line.

Fig. 9
Fig. 9

Wavefront map measured at oblique incidence. The wavefront map is homogeneity map multiplied by depth d. The aperture is 309mm × 400mm excluding edge influence. The right curves are wavefront profiles at sampled lines. The up curve is the wavefront profile at x-line and the down curve is the wavefront profile at y-line. The PV and rms values below the curves are corresponded to x-line.

Tables (1)

Tables Icon

Table 1 Results of Inhomogeneity Measured at 28 Degree Incidence

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

n(x,y)= n 0 +Δn(x,y)
C= Z 1 + Z 2 ,
T 1 = Z 1 ( Z a '+ Z b )( n 0 cosθ'cosθ)+ Z 2 Δ n 1 d cosθ' ,
T 2 = Z 1 ( Z a + Z b )( n 0 cosθ'cosθ)+ Z 2 Δ n 2 d cosθ' ,
A= Z 1 +2 Z a cosθ+ Z 2f ,
B= Z 1 + Z a ( n 0 cosθ'cosθ)2 Z b n 0 cosθ' Z a '( n 0 cosθ'cosθ)+ Z 2f (Δ n 1 +Δ n 2 )d cosθ' ,
x 0 =2dtanθ'cosθ
Δ n 2 =[2 n 0 cosθ'C(cosθ+ n 0 cosθ') T 1 +(BA T 2 )( n 0 cosθ'cosθ)] cosθ' 2dcosθ
lm=lcosθ+dsinθ,
θ'=asin( sinθ n 0 )
t=1 d l 2sinθ n 0 2 sin 2 θ .
Δn'=[( n 0 1)(B'A') n 0 (T'C')]/d.

Metrics