Abstract

A new heterodyne interferometer scheme which has open accesses to both the geometrically balanced probe beam (PB) and reference beam (RB) paths, for which, depending on the nature of a specific sensing mechanism, a transmission geometry or a reflection geometry can be employed, is presented. We will show that, because of a small separation between the short length PB and RB running parallel to each other our newly proposed optical arrangement allows high rejection of unlocalized environmental perturbations. In fact, the geometrically balanced optical arrangement provides 19dB rejection of any vibrations parallel to the direction of beam propagation, which cannot be achieved in a conventional interferometer scheme. Applications of this new interferometer scheme are discussed. As an example, we will show that our newly proposed interferometer scheme can be applied for high sensitivity measurements of concentration dependent refractive indexes in various solutions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Collett, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt.34(6-7), 881–902 (1987).
    [CrossRef]
  2. C. C. Davis, “Building small, extremely sensitive practical laser interferometers for sensor applications,” Nucl. Phys. B6, 290–297 (1989).
    [CrossRef]
  3. N. Bobroff, “Recent advanced in displacement measuring interferometry,” Meas. Sci. Technol.4(9), 907–926 (1993).
    [CrossRef]
  4. P. Schellekens, G. Wilkening, F. Reinboth, M. J. Downs, K. P. Birch, and J. Spronck, “Measurements of the Refractive Index of Air Using Interference Refractormeters,” Metrologia22(4), 279–287 (1986).
    [CrossRef]
  5. J. Terrien, “An air refractometer for interference length metrology,” Metrologia1(3), 80–83 (1965).
    [CrossRef]
  6. K. H. Kwon, B. S. Kim, and K. Cho, “A new scanning heterodyne interferometer scheme for mapping both surface structure and effective local reflection coefficient,” Opt. Express16(17), 13456–13464 (2008).
    [CrossRef] [PubMed]
  7. Y. Park, K.-E. Kim, S.-J. Kim, J.-G. Park, Y.-H. Joo, B. Hyun Shin, S.-Y. Lee, and K. Cho, “Wide measurement range scanning heterodyne interferometer utilizing astigmatic position sensing scheme,” Opt. Lett.36(16), 3112–3114 (2011).
    [CrossRef] [PubMed]
  8. D. L. Mazzoni, K. Cho, and C. C. Davis, “A Coherent hybrid fiber-optic probe for mapping induced birefringence in GaAs structures,” J. Lightwave Technol.11(7), 1158–1161 (1993).
    [CrossRef]
  9. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  10. K. Cho, D. L. Mazzoni, and C. C. Davis, “Measurement of the local slope of a surface by vibrating-sample interferometry: a new method in scanning microscopy,” Opt. Lett.18(3), 232–234 (1993).
    [CrossRef] [PubMed]
  11. Y. Park and K. Cho, “Heterodyne interferometer scheme using a double pass in an acousto-optic modulator,” Opt. Lett.36(3), 331–333 (2011).
    [CrossRef] [PubMed]
  12. M. Chiu, B. Shih, and C. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett.90(2), 021111 (2007).
    [CrossRef]
  13. M. M. Varma, D. D. Nolte, H. D. Inerowicz, and F. E. Regnier, “Spinning-disk self-referencing interferometry of antigen-antibody recognition,” Opt. Lett.29(9), 950–952 (2004).
    [CrossRef] [PubMed]
  14. D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science317(5845), 1732–1736 (2007).
    [CrossRef] [PubMed]
  15. C. M. Wu, “Heterodyne interferometric system with subnanometer accuracy for measurement of straightness,” Appl. Opt.43(19), 3812–3816 (2004).
    [CrossRef] [PubMed]
  16. N. A. Riza and M. A. Arain, “Angstrom-range optical path-length measurement with a high-speed scanning heterodyne optical interferometer,” Appl. Opt.42(13), 2341–2345 (2003).
    [CrossRef] [PubMed]
  17. S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng.26(4), 448–455 (2002).
    [CrossRef]
  18. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE5068, 393–395 (2003).
    [CrossRef]
  19. W. M. Yunus and A. B. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt.27(16), 3341–3343 (1988).
    [CrossRef] [PubMed]
  20. R. J. Jiménez Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
    [CrossRef] [PubMed]
  21. O. Esteban, M. Cruz-Navarrete, A. González-Cano, and E. Bernabeu, “Measurement of the degree of salinity of water with a fiber-optic sensor,” Appl. Opt.38(25), 5267–5271 (1999).
    [CrossRef] [PubMed]

2011 (2)

2009 (1)

R. J. Jiménez Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

2008 (2)

K. H. Kwon, B. S. Kim, and K. Cho, “A new scanning heterodyne interferometer scheme for mapping both surface structure and effective local reflection coefficient,” Opt. Express16(17), 13456–13464 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

2007 (2)

M. Chiu, B. Shih, and C. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett.90(2), 021111 (2007).
[CrossRef]

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

2004 (2)

2003 (2)

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE5068, 393–395 (2003).
[CrossRef]

N. A. Riza and M. A. Arain, “Angstrom-range optical path-length measurement with a high-speed scanning heterodyne optical interferometer,” Appl. Opt.42(13), 2341–2345 (2003).
[CrossRef] [PubMed]

2002 (1)

S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng.26(4), 448–455 (2002).
[CrossRef]

1999 (1)

1993 (3)

K. Cho, D. L. Mazzoni, and C. C. Davis, “Measurement of the local slope of a surface by vibrating-sample interferometry: a new method in scanning microscopy,” Opt. Lett.18(3), 232–234 (1993).
[CrossRef] [PubMed]

D. L. Mazzoni, K. Cho, and C. C. Davis, “A Coherent hybrid fiber-optic probe for mapping induced birefringence in GaAs structures,” J. Lightwave Technol.11(7), 1158–1161 (1993).
[CrossRef]

N. Bobroff, “Recent advanced in displacement measuring interferometry,” Meas. Sci. Technol.4(9), 907–926 (1993).
[CrossRef]

1989 (1)

C. C. Davis, “Building small, extremely sensitive practical laser interferometers for sensor applications,” Nucl. Phys. B6, 290–297 (1989).
[CrossRef]

1988 (1)

1987 (1)

M. J. Collett, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt.34(6-7), 881–902 (1987).
[CrossRef]

1986 (1)

P. Schellekens, G. Wilkening, F. Reinboth, M. J. Downs, K. P. Birch, and J. Spronck, “Measurements of the Refractive Index of Air Using Interference Refractormeters,” Metrologia22(4), 279–287 (1986).
[CrossRef]

1965 (1)

J. Terrien, “An air refractometer for interference length metrology,” Metrologia1(3), 80–83 (1965).
[CrossRef]

Arain, M. A.

Bashkatov, A. N.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE5068, 393–395 (2003).
[CrossRef]

Bernabeu, E.

Birch, K. P.

P. Schellekens, G. Wilkening, F. Reinboth, M. J. Downs, K. P. Birch, and J. Spronck, “Measurements of the Refractive Index of Air Using Interference Refractormeters,” Metrologia22(4), 279–287 (1986).
[CrossRef]

Bobroff, N.

N. Bobroff, “Recent advanced in displacement measuring interferometry,” Meas. Sci. Technol.4(9), 907–926 (1993).
[CrossRef]

Bornhop, D. J.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Chiu, M.

M. Chiu, B. Shih, and C. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett.90(2), 021111 (2007).
[CrossRef]

Cho, K.

Collett, M. J.

M. J. Collett, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt.34(6-7), 881–902 (1987).
[CrossRef]

Cosijns, S. J. A. G.

S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng.26(4), 448–455 (2002).
[CrossRef]

Cruz-Navarrete, M.

Davis, C. C.

K. Cho, D. L. Mazzoni, and C. C. Davis, “Measurement of the local slope of a surface by vibrating-sample interferometry: a new method in scanning microscopy,” Opt. Lett.18(3), 232–234 (1993).
[CrossRef] [PubMed]

D. L. Mazzoni, K. Cho, and C. C. Davis, “A Coherent hybrid fiber-optic probe for mapping induced birefringence in GaAs structures,” J. Lightwave Technol.11(7), 1158–1161 (1993).
[CrossRef]

C. C. Davis, “Building small, extremely sensitive practical laser interferometers for sensor applications,” Nucl. Phys. B6, 290–297 (1989).
[CrossRef]

Downs, M. J.

P. Schellekens, G. Wilkening, F. Reinboth, M. J. Downs, K. P. Birch, and J. Spronck, “Measurements of the Refractive Index of Air Using Interference Refractormeters,” Metrologia22(4), 279–287 (1986).
[CrossRef]

Esteban, O.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Gardiner, C. W.

M. J. Collett, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt.34(6-7), 881–902 (1987).
[CrossRef]

Genina, E. A.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE5068, 393–395 (2003).
[CrossRef]

González-Cano, A.

Haitjema, H.

S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng.26(4), 448–455 (2002).
[CrossRef]

Hyun Shin, B.

Inerowicz, H. D.

Jiménez Riobóo, R. J.

R. J. Jiménez Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

Jones, R. D.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Joo, Y.-H.

Kim, B. S.

Kim, K.-E.

Kim, S.-J.

Krüger, J. K.

R. J. Jiménez Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

Kussrow, A.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Kwon, K. H.

Lai, C.

M. Chiu, B. Shih, and C. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett.90(2), 021111 (2007).
[CrossRef]

Latham, J. C.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Lee, S.-Y.

Loudon, R.

M. J. Collett, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt.34(6-7), 881–902 (1987).
[CrossRef]

Markov, D. A.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Mazzoni, D. L.

D. L. Mazzoni, K. Cho, and C. C. Davis, “A Coherent hybrid fiber-optic probe for mapping induced birefringence in GaAs structures,” J. Lightwave Technol.11(7), 1158–1161 (1993).
[CrossRef]

K. Cho, D. L. Mazzoni, and C. C. Davis, “Measurement of the local slope of a surface by vibrating-sample interferometry: a new method in scanning microscopy,” Opt. Lett.18(3), 232–234 (1993).
[CrossRef] [PubMed]

Nolte, D. D.

Park, J.-G.

Park, Y.

Philipp, M.

R. J. Jiménez Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

Rahman, A. B.

Ramos, M. A.

R. J. Jiménez Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

Regnier, F. E.

Reinboth, F.

P. Schellekens, G. Wilkening, F. Reinboth, M. J. Downs, K. P. Birch, and J. Spronck, “Measurements of the Refractive Index of Air Using Interference Refractormeters,” Metrologia22(4), 279–287 (1986).
[CrossRef]

Riza, N. A.

Schellekens, P.

P. Schellekens, G. Wilkening, F. Reinboth, M. J. Downs, K. P. Birch, and J. Spronck, “Measurements of the Refractive Index of Air Using Interference Refractormeters,” Metrologia22(4), 279–287 (1986).
[CrossRef]

Schellekens, P. H. J.

S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng.26(4), 448–455 (2002).
[CrossRef]

Shih, B.

M. Chiu, B. Shih, and C. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett.90(2), 021111 (2007).
[CrossRef]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Sørensen, H. S.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Spronck, J.

P. Schellekens, G. Wilkening, F. Reinboth, M. J. Downs, K. P. Birch, and J. Spronck, “Measurements of the Refractive Index of Air Using Interference Refractormeters,” Metrologia22(4), 279–287 (1986).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Terrien, J.

J. Terrien, “An air refractometer for interference length metrology,” Metrologia1(3), 80–83 (1965).
[CrossRef]

Varma, M. M.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Wilkening, G.

P. Schellekens, G. Wilkening, F. Reinboth, M. J. Downs, K. P. Birch, and J. Spronck, “Measurements of the Refractive Index of Air Using Interference Refractormeters,” Metrologia22(4), 279–287 (1986).
[CrossRef]

Wu, C. M.

Yunus, W. M.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

M. Chiu, B. Shih, and C. Lai, “Laser-scanning angle deviation microscopy,” Appl. Phys. Lett.90(2), 021111 (2007).
[CrossRef]

Eur Phys J E Soft Matter (1)

R. J. Jiménez Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

D. L. Mazzoni, K. Cho, and C. C. Davis, “A Coherent hybrid fiber-optic probe for mapping induced birefringence in GaAs structures,” J. Lightwave Technol.11(7), 1158–1161 (1993).
[CrossRef]

J. Mod. Opt. (1)

M. J. Collett, R. Loudon, and C. W. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt.34(6-7), 881–902 (1987).
[CrossRef]

Meas. Sci. Technol. (1)

N. Bobroff, “Recent advanced in displacement measuring interferometry,” Meas. Sci. Technol.4(9), 907–926 (1993).
[CrossRef]

Metrologia (2)

P. Schellekens, G. Wilkening, F. Reinboth, M. J. Downs, K. P. Birch, and J. Spronck, “Measurements of the Refractive Index of Air Using Interference Refractormeters,” Metrologia22(4), 279–287 (1986).
[CrossRef]

J. Terrien, “An air refractometer for interference length metrology,” Metrologia1(3), 80–83 (1965).
[CrossRef]

Nucl. Phys. B (1)

C. C. Davis, “Building small, extremely sensitive practical laser interferometers for sensor applications,” Nucl. Phys. B6, 290–297 (1989).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Precis. Eng. (1)

S. J. A. G. Cosijns, H. Haitjema, and P. H. J. Schellekens, “Modeling and verifying non-linearities in heterodyne displacement interferometry,” Precis. Eng.26(4), 448–455 (2002).
[CrossRef]

Proc. SPIE (1)

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” Proc. SPIE5068, 393–395 (2003).
[CrossRef]

Science (1)

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science317(5845), 1732–1736 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of experimental arrangement (a), and a photograph of the interferometer and sample part of the experimental arrangement (b).

Fig. 2
Fig. 2

Frequency spectra of vibration measurements: (a) the RB and PB are reflected by the two independent mirrors of which a 40Hz vibration is applied to one mirror by using a PZT, and (b) the PB and RB are reflected by one mirror which is driven by the same PZT with the identical driving signal with (a).

Fig. 3
Fig. 3

Experimental results on RI measurements: (a) Phase measurements for various concentrations of ethylene glycol solution. The phase was modulated by altering flow of the water and the ethylene glycol solutions in the SCH. (b) Measurement results for concentration dependent ΔRIs for various solutions. The solid lines are extrapolations of the corresponding linear fitting results of previous measurements in [1820].

Fig. 4
Fig. 4

Phase noise measurements when both channels are filled with water for 10 minutes (a), and RMS noises for 20 same consecutive measurements.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

v Q v I =tan( Δϕ )
Δϕ= 2π c [ ( ν 1 ν 2 ) l arm +Δ ϕ QS +Δ ϕ NL +2( n R l R ν 1 n s l s ν 2 ) ]
Δ ϕ FC = 4π c ( n R ν 1 n s ν 2 ) l FC ,

Metrics