Abstract

A theoretical and experimental investigation of the transmission of solid-core photonic crystal fibers (PCFs) filled with nonlinear absorbers shows a sharp change in the threshold for optical limiting and in leakage loss as the refractive index of the material in the holes approaches that of the glass matrix. Theoretical calculations of the mode profiles and leakage loss of the PCF are in agreement with experimental results and indicate that the change in limiting response is due to the interaction of the evanescent field of the guided mode with the nonlinear absorbers in the holes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chi, A. Rosenberg, A. Nayak, T. V. Duncan, M. J. Therien, J. J. Butler, S. R. Montgomery, G. Beadie, R. G. S. Pong, J. S. Shirk, and S. R. Flom, “Near IR nonlinear absorption of an organic supermolecule [Invited],” Opt. Mater. Express1(7), 1383–1392 (2011).
    [CrossRef]
  2. J. M. Hales, M. Cozzuol, T. E. O. Screen, H. L. Anderson, and J. W. Perry, “Metalloporphyrin polymer with temporally agile, broadband nonlinear absorption for optical limiting in the near infrared,” Opt. Express17(21), 18478–18488 (2009).
    [CrossRef] [PubMed]
  3. J. J. Butler, S. R. Flom, J. S. Shirk, T. E. Taunay, B. M. Wright, and M. J. Wiggins, “Optical limiting properties of nonlinear multimode waveguide arrays,” Opt. Express17(2), 804–809 (2009).
    [CrossRef] [PubMed]
  4. I. C. Khoo, “Nonlinear organic liquid-cored fiber array for all-optical switching and sensor protection against short-pulsed lasers,” IEEE J. Sel. Top. Quantum Electron.14(3), 946–951 (2008).
    [CrossRef]
  5. I. C. Khoo, A. Diaz, and J. Ding, “Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses,” J. Opt. Soc. Am. B21(6), 1234–1240 (2004).
    [CrossRef]
  6. J. J. Butler, J. J. Wathen, S. R. Flom, R. G. S. Pong, and J. S. Shirk, “Optical limiting properties of nonlinear multimode waveguides,” Opt. Lett.28(18), 1689–1691 (2003).
    [CrossRef] [PubMed]
  7. N. Healy, J. R. Sparks, R. R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “High index contrast semiconductor ARROW and hybrid ARROW fibers,” Opt. Express19(11), 10979–10985 (2011).
    [CrossRef] [PubMed]
  8. P. Mehta, N. Healy, T. D. Day, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “All-optical modulation using two-photon absorption in silicon core optical fibers,” Opt. Express19(20), 19078–19083 (2011).
    [CrossRef] [PubMed]
  9. D. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
    [CrossRef]
  10. X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photonics Technol. Lett.20(5), 336–338 (2008).
    [CrossRef]
  11. C. Martelli, J. Canning, D. Stocks, and M. J. Crossley, “Water-soluble porphyrin detection in a pure-silica photonic crystal fiber,” Opt. Lett.31(14), 2100–2102 (2006).
    [CrossRef] [PubMed]
  12. J. J. Butler, S. R. Sueoka, S. R. Montgomery, S. R. Flom, R. G. S. Pong, J. S. Shirk, T. E. Taunay, B. M. Wright, J. Hu, and C. R. Menyuk, “Optical limiting in solid-core photonic crystal fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD), (Optical Society of America, 2007), paper CMS6.
    [CrossRef]
  13. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B19(10), 2322–2330 (2002).
    [CrossRef]
  14. P. M. Agruzov, I. V. Il’ichev, and A. V. Shamray, “Optical properties of liquid filled microstructured fiber with glass core,” Tech. Phys. Lett.37(5), 478–481 (2011).
    [CrossRef]
  15. S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, “A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes,” Appl. Phys. Lett.71(1), 10–12 (1997).
    [CrossRef]
  16. J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, “Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines,” Opt. Lett.19(9), 625–627 (1994).
    [CrossRef] [PubMed]
  17. P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction,” J. Am. Chem. Soc.110(23), 7626–7630 (1988).
    [CrossRef]
  18. P. Govind, Agrawal, in Nonlinear Fiber Optics, Fifth Edition, (Academic Press, 2013), Chap. 1.

2011

2009

2008

I. C. Khoo, “Nonlinear organic liquid-cored fiber array for all-optical switching and sensor protection against short-pulsed lasers,” IEEE J. Sel. Top. Quantum Electron.14(3), 946–951 (2008).
[CrossRef]

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photonics Technol. Lett.20(5), 336–338 (2008).
[CrossRef]

2007

D. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

2006

2004

2003

2002

1997

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, “A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes,” Appl. Phys. Lett.71(1), 10–12 (1997).
[CrossRef]

1994

1988

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction,” J. Am. Chem. Soc.110(23), 7626–7630 (1988).
[CrossRef]

Agruzov, P. M.

P. M. Agruzov, I. V. Il’ichev, and A. V. Shamray, “Optical properties of liquid filled microstructured fiber with glass core,” Tech. Phys. Lett.37(5), 478–481 (2011).
[CrossRef]

Alvarez, D.

Anderson, H. L.

Badding, J. V.

Baril, N. F.

D. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Beadie, G.

Botten, L. C.

Butler, J. J.

Calkins, J.

D. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Canning, J.

Chi, S.

Choong, I.

Cozzuol, M.

Crossley, M. J.

Day, T. D.

de Sterke, C. M.

Diaz, A.

Ding, J.

Duncan, T. V.

Firey, P. A.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction,” J. Am. Chem. Soc.110(23), 7626–7630 (1988).
[CrossRef]

Flom, S. R.

Ford, W. E.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction,” J. Am. Chem. Soc.110(23), 7626–7630 (1988).
[CrossRef]

Gopalan, V.

D. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Hales, J. M.

He, R. R.

Healy, N.

Hollins, R. C.

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, “A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes,” Appl. Phys. Lett.71(1), 10–12 (1997).
[CrossRef]

Il’ichev, I. V.

P. M. Agruzov, I. V. Il’ichev, and A. V. Shamray, “Optical properties of liquid filled microstructured fiber with glass core,” Tech. Phys. Lett.37(5), 478–481 (2011).
[CrossRef]

Kang, H.

D. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Kenney, M. E.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction,” J. Am. Chem. Soc.110(23), 7626–7630 (1988).
[CrossRef]

Khoo, I. C.

I. C. Khoo, “Nonlinear organic liquid-cored fiber array for all-optical switching and sensor protection against short-pulsed lasers,” IEEE J. Sel. Top. Quantum Electron.14(3), 946–951 (2008).
[CrossRef]

I. C. Khoo, A. Diaz, and J. Ding, “Nonlinear-absorbing fiber array for large-dynamic-range optical limiting application against intense short laser pulses,” J. Opt. Soc. Am. B21(6), 1234–1240 (2004).
[CrossRef]

Kuhlmey, B. T.

Kwok, Y. C.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photonics Technol. Lett.20(5), 336–338 (2008).
[CrossRef]

Mansour, K.

Marder, S. R.

Martelli, C.

Maystre, D.

McPhedran, R. C.

Mehta, P.

Montgomery, S. R.

Nayak, A.

Ngo, N. Q.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photonics Technol. Lett.20(5), 336–338 (2008).
[CrossRef]

Peacock, A. C.

Perry, J. W.

Perry, K. J.

Pong, R. G. S.

Ramirez, M. O.

D. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Ren, G. B.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photonics Technol. Lett.20(5), 336–338 (2008).
[CrossRef]

Renversez, G.

Rodgers, M. A. J.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction,” J. Am. Chem. Soc.110(23), 7626–7630 (1988).
[CrossRef]

Rosenberg, A.

Sambles, J. R.

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, “A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes,” Appl. Phys. Lett.71(1), 10–12 (1997).
[CrossRef]

Sazio, P. J. A.

Screen, T. E. O.

Shamray, A. V.

P. M. Agruzov, I. V. Il’ichev, and A. V. Shamray, “Optical properties of liquid filled microstructured fiber with glass core,” Tech. Phys. Lett.37(5), 478–481 (2011).
[CrossRef]

Shirk, J. S.

Shum, P.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photonics Technol. Lett.20(5), 336–338 (2008).
[CrossRef]

Sounik, J. R.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction,” J. Am. Chem. Soc.110(23), 7626–7630 (1988).
[CrossRef]

Sparks, J. R.

Stocks, D.

Sun, Y.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photonics Technol. Lett.20(5), 336–338 (2008).
[CrossRef]

Swatton, S. N. R.

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, “A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes,” Appl. Phys. Lett.71(1), 10–12 (1997).
[CrossRef]

Taunay, T. E.

Therien, M. J.

Wathen, J. J.

Welford, K. R.

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, “A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes,” Appl. Phys. Lett.71(1), 10–12 (1997).
[CrossRef]

White, T. P.

Wiggins, M. J.

Won, D.

D. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

Wright, B. M.

Yu, X.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photonics Technol. Lett.20(5), 336–338 (2008).
[CrossRef]

Appl. Phys. Lett.

D. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett.91(16), 161112 (2007).
[CrossRef]

S. N. R. Swatton, K. R. Welford, R. C. Hollins, and J. R. Sambles, “A time resolved double pump-probe experimental technique to characterize excited-state parameters of organic dyes,” Appl. Phys. Lett.71(1), 10–12 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I. C. Khoo, “Nonlinear organic liquid-cored fiber array for all-optical switching and sensor protection against short-pulsed lasers,” IEEE J. Sel. Top. Quantum Electron.14(3), 946–951 (2008).
[CrossRef]

IEEE Photonics Technol. Lett.

X. Yu, Y. Sun, G. B. Ren, P. Shum, N. Q. Ngo, and Y. C. Kwok, “Evanescent field absorption sensor using a pure-silica defected-core photonic crystal fiber,” IEEE Photonics Technol. Lett.20(5), 336–338 (2008).
[CrossRef]

J. Am. Chem. Soc.

P. A. Firey, W. E. Ford, J. R. Sounik, M. E. Kenney, and M. A. J. Rodgers, “Silicon naphthalocyanine triplet-state and oxygen - a reversible energy-transfer reaction,” J. Am. Chem. Soc.110(23), 7626–7630 (1988).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Opt. Mater. Express

Tech. Phys. Lett.

P. M. Agruzov, I. V. Il’ichev, and A. V. Shamray, “Optical properties of liquid filled microstructured fiber with glass core,” Tech. Phys. Lett.37(5), 478–481 (2011).
[CrossRef]

Other

J. J. Butler, S. R. Sueoka, S. R. Montgomery, S. R. Flom, R. G. S. Pong, J. S. Shirk, T. E. Taunay, B. M. Wright, J. Hu, and C. R. Menyuk, “Optical limiting in solid-core photonic crystal fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD), (Optical Society of America, 2007), paper CMS6.
[CrossRef]

P. Govind, Agrawal, in Nonlinear Fiber Optics, Fifth Edition, (Academic Press, 2013), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Example of PCF used in this work.

Fig. 2
Fig. 2

(a) Leakage loss coefficient and power ratio in the holes vs. refractive index of the solvent in the holes for a PCF with the described geometry. (b) Optical mode profiles of a PCF filled with solvents having the refractive indices shown. The color contour plots represent the Poynting flux; red = large, blue = small flux. Figure 2(a) from Ref. 12.

Fig. 3
Fig. 3

(a) Linear absorption spectrum of white light traveling in a PCF sample filled with a nd = 1.435 solution of SiNC in DOP/DES. (b) Linear absorption spectrum of a 1.6 x 10−5 mol/L bulk sample (1 cm cell) of SiNC in DOP/DES.

Fig. 4
Fig. 4

(a) Transmission of PCF filled with solutions of SiNC in DOP/DES mixtures with refractive indices shown. (b) Expanded scale for the n = 1.455 case from (a).

Fig. 5
Fig. 5

Experimental (blue circles) and theoretical (red triangles) leakage loss coefficient vs. refractive index of the solvent in the holes. The blue circles assume an average coupling coefficient of 0.47. The crosses and squares are the experimental values assuming an average coupling efficiency of 0.25 and 0.75, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E B E A = k C 1 0 - α L / 1 0 .

Metrics