Abstract

By utilizing a reflective plasmonic slab, it is demonstrated numerically and experimentally in this paper deep sub-wavelength imaging lithography for nano characters with about 50nm line width and dense lines with 32nm half pitch resolution (about 1/12 wavelength). Compared with the control experiment without reflective plasmonic slab, resolution and fidelity of imaged resist patterns are remarkably improved especially for isolated nano features. Further numerical simulations show that near field optical proximity corrections help to improve imaging fidelity of two dimensional nano patterns.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. R. J. Blaikie, M. M. Alkaisi, S. J. McNab, D. R. S. Cumming, R. Cheung, and D. G. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng.46(1-4), 85–88 (1999).
    [CrossRef]
  3. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett.75(22), 3560–3562 (1999).
    [CrossRef]
  4. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett.84(23), 4780–4782 (2004).
    [CrossRef]
  5. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett.5(5), 957–961 (2005).
    [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  7. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express13(6), 2127–2134 (2005).
    [CrossRef] [PubMed]
  8. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313(5793), 1595 (2006).
    [CrossRef] [PubMed]
  9. D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett.86(25), 253107 (2005).
    [CrossRef]
  10. D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express13(18), 6964–6973 (2005).
    [CrossRef] [PubMed]
  11. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express15(18), 11542–11552 (2007).
    [CrossRef] [PubMed]
  12. T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
    [CrossRef]
  13. C. W. Holzwarth, J. E. Foulkes, and R. J. Blaikie, “Increased process latitude in absorbance-modulated lithography via a plasmonic reflector,” Opt. Express19(18), 17790–17798 (2011).
    [CrossRef] [PubMed]
  14. G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer,” Plasmonics8(2), 1065–1072 (2013).
    [CrossRef]
  15. Jianjie Dong, Juan Liu, Xingxing Zhao, and Peng Liu, “A super lens system for demagnification imaging beyond the diffraction limit,” Plasmonics (2013).
    [CrossRef]
  16. P. B. Johnson and R. W. Christy, “Optical constants of the noble metal,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  17. V. Intaraprasonk, Z. Yu, and S. Fan, “Image transfer with subwavelength resolution to metal–dielectric interface,” J. Opt. Soc. Am. B28(5), 1335–1338 (2011).
    [CrossRef]
  18. Marvin J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  19. X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett.31(17), 2613–2615 (2006).
    [CrossRef] [PubMed]
  20. B. B. Zeng, L. Pan, L. Liu, L. Fang, C. Wang, and X. Luo, “Improved near field lithography by surface plasmon resonance in groove-patterned masks,” J. Opt. A, Pure Appl. Opt.11(12), 125003 (2009).
    [CrossRef]
  21. D. Shao and S. Chen, “Surface plasmon assisted contact scheme nanoscale photolithography,” J. Vac. Sci. Technol. B26(1), 227–231 (2008).
    [CrossRef]

2013 (2)

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer,” Plasmonics8(2), 1065–1072 (2013).
[CrossRef]

Jianjie Dong, Juan Liu, Xingxing Zhao, and Peng Liu, “A super lens system for demagnification imaging beyond the diffraction limit,” Plasmonics (2013).
[CrossRef]

2011 (2)

2009 (2)

B. B. Zeng, L. Pan, L. Liu, L. Fang, C. Wang, and X. Luo, “Improved near field lithography by surface plasmon resonance in groove-patterned masks,” J. Opt. A, Pure Appl. Opt.11(12), 125003 (2009).
[CrossRef]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
[CrossRef]

2008 (1)

D. Shao and S. Chen, “Surface plasmon assisted contact scheme nanoscale photolithography,” J. Vac. Sci. Technol. B26(1), 227–231 (2008).
[CrossRef]

2007 (1)

2006 (2)

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313(5793), 1595 (2006).
[CrossRef] [PubMed]

X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett.31(17), 2613–2615 (2006).
[CrossRef] [PubMed]

2005 (5)

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett.86(25), 253107 (2005).
[CrossRef]

D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express13(18), 6964–6973 (2005).
[CrossRef] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett.5(5), 957–961 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

2004 (1)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett.84(23), 4780–4782 (2004).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (2)

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, D. R. S. Cumming, R. Cheung, and D. G. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng.46(1-4), 85–88 (1999).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett.75(22), 3560–3562 (1999).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metal,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Alkaisi, M. M.

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, D. R. S. Cumming, R. Cheung, and D. G. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng.46(1-4), 85–88 (1999).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett.75(22), 3560–3562 (1999).
[CrossRef]

Arnold, M. D.

Blaikie, R. J.

C. W. Holzwarth, J. E. Foulkes, and R. J. Blaikie, “Increased process latitude in absorbance-modulated lithography via a plasmonic reflector,” Opt. Express19(18), 17790–17798 (2011).
[CrossRef] [PubMed]

M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express15(18), 11542–11552 (2007).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express13(6), 2127–2134 (2005).
[CrossRef] [PubMed]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett.75(22), 3560–3562 (1999).
[CrossRef]

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, D. R. S. Cumming, R. Cheung, and D. G. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng.46(1-4), 85–88 (1999).
[CrossRef]

Chen, S.

D. Shao and S. Chen, “Surface plasmon assisted contact scheme nanoscale photolithography,” J. Vac. Sci. Technol. B26(1), 227–231 (2008).
[CrossRef]

Chen, S. C.

D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express13(18), 6964–6973 (2005).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett.86(25), 253107 (2005).
[CrossRef]

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett.75(22), 3560–3562 (1999).
[CrossRef]

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, D. R. S. Cumming, R. Cheung, and D. G. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng.46(1-4), 85–88 (1999).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metal,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cui, J.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
[CrossRef]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett.75(22), 3560–3562 (1999).
[CrossRef]

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, D. R. S. Cumming, R. Cheung, and D. G. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng.46(1-4), 85–88 (1999).
[CrossRef]

Dong, Jianjie

Jianjie Dong, Juan Liu, Xingxing Zhao, and Peng Liu, “A super lens system for demagnification imaging beyond the diffraction limit,” Plasmonics (2013).
[CrossRef]

Du, J.

Fan, S.

Fang, L.

B. B. Zeng, L. Pan, L. Liu, L. Fang, C. Wang, and X. Luo, “Improved near field lithography by surface plasmon resonance in groove-patterned masks,” J. Opt. A, Pure Appl. Opt.11(12), 125003 (2009).
[CrossRef]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Feng, Q.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
[CrossRef]

Foulkes, J. E.

Guo, X.

Guo, Y.

Hasko, D. G.

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, D. R. S. Cumming, R. Cheung, and D. G. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng.46(1-4), 85–88 (1999).
[CrossRef]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313(5793), 1595 (2006).
[CrossRef] [PubMed]

Holzwarth, C. W.

Intaraprasonk, V.

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett.84(23), 4780–4782 (2004).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metal,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313(5793), 1595 (2006).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Liu, Juan

Jianjie Dong, Juan Liu, Xingxing Zhao, and Peng Liu, “A super lens system for demagnification imaging beyond the diffraction limit,” Plasmonics (2013).
[CrossRef]

Liu, L.

B. B. Zeng, L. Pan, L. Liu, L. Fang, C. Wang, and X. Luo, “Improved near field lithography by surface plasmon resonance in groove-patterned masks,” J. Opt. A, Pure Appl. Opt.11(12), 125003 (2009).
[CrossRef]

Liu, Peng

Jianjie Dong, Juan Liu, Xingxing Zhao, and Peng Liu, “A super lens system for demagnification imaging beyond the diffraction limit,” Plasmonics (2013).
[CrossRef]

Liu, Y.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
[CrossRef]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett.5(5), 957–961 (2005).
[CrossRef] [PubMed]

Luo, X.

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer,” Plasmonics8(2), 1065–1072 (2013).
[CrossRef]

B. B. Zeng, L. Pan, L. Liu, L. Fang, C. Wang, and X. Luo, “Improved near field lithography by surface plasmon resonance in groove-patterned masks,” J. Opt. A, Pure Appl. Opt.11(12), 125003 (2009).
[CrossRef]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
[CrossRef]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett.84(23), 4780–4782 (2004).
[CrossRef]

Ma, J.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
[CrossRef]

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett.75(22), 3560–3562 (1999).
[CrossRef]

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, D. R. S. Cumming, R. Cheung, and D. G. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng.46(1-4), 85–88 (1999).
[CrossRef]

Melville, D. O. S.

Pan, L.

B. B. Zeng, L. Pan, L. Liu, L. Fang, C. Wang, and X. Luo, “Improved near field lithography by surface plasmon resonance in groove-patterned masks,” J. Opt. A, Pure Appl. Opt.11(12), 125003 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Ren, G.

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer,” Plasmonics8(2), 1065–1072 (2013).
[CrossRef]

Shao, D.

D. Shao and S. Chen, “Surface plasmon assisted contact scheme nanoscale photolithography,” J. Vac. Sci. Technol. B26(1), 227–231 (2008).
[CrossRef]

Shao, D. B.

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett.86(25), 253107 (2005).
[CrossRef]

D. B. Shao and S. C. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express13(18), 6964–6973 (2005).
[CrossRef] [PubMed]

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313(5793), 1595 (2006).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tao, X.

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer,” Plasmonics8(2), 1065–1072 (2013).
[CrossRef]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313(5793), 1595 (2006).
[CrossRef] [PubMed]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313(5793), 1595 (2006).
[CrossRef] [PubMed]

Wang, C.

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer,” Plasmonics8(2), 1065–1072 (2013).
[CrossRef]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
[CrossRef]

B. B. Zeng, L. Pan, L. Liu, L. Fang, C. Wang, and X. Luo, “Improved near field lithography by surface plasmon resonance in groove-patterned masks,” J. Opt. A, Pure Appl. Opt.11(12), 125003 (2009).
[CrossRef]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett.5(5), 957–961 (2005).
[CrossRef] [PubMed]

Xu, T.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
[CrossRef]

Yao, J.

Yi, G.

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer,” Plasmonics8(2), 1065–1072 (2013).
[CrossRef]

Yu, Z.

Zeng, B.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
[CrossRef]

Zeng, B. B.

B. B. Zeng, L. Pan, L. Liu, L. Fang, C. Wang, and X. Luo, “Improved near field lithography by surface plasmon resonance in groove-patterned masks,” J. Opt. A, Pure Appl. Opt.11(12), 125003 (2009).
[CrossRef]

Zhang, X.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett.5(5), 957–961 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhao, Xingxing

Jianjie Dong, Juan Liu, Xingxing Zhao, and Peng Liu, “A super lens system for demagnification imaging beyond the diffraction limit,” Plasmonics (2013).
[CrossRef]

Appl. Phys. B (1)

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B97(1), 175–179 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett.86(25), 253107 (2005).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett.75(22), 3560–3562 (1999).
[CrossRef]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett.84(23), 4780–4782 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

B. B. Zeng, L. Pan, L. Liu, L. Fang, C. Wang, and X. Luo, “Improved near field lithography by surface plasmon resonance in groove-patterned masks,” J. Opt. A, Pure Appl. Opt.11(12), 125003 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

D. Shao and S. Chen, “Surface plasmon assisted contact scheme nanoscale photolithography,” J. Vac. Sci. Technol. B26(1), 227–231 (2008).
[CrossRef]

Microelectron. Eng. (1)

R. J. Blaikie, M. M. Alkaisi, S. J. McNab, D. R. S. Cumming, R. Cheung, and D. G. Hasko, “Nanolithography using optical contact exposure in the evanescent near field,” Microelectron. Eng.46(1-4), 85–88 (1999).
[CrossRef]

Nano Lett. (1)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett.5(5), 957–961 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metal,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Plasmonics (2)

G. Ren, C. Wang, G. Yi, X. Tao, and X. Luo, “Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer,” Plasmonics8(2), 1065–1072 (2013).
[CrossRef]

Jianjie Dong, Juan Liu, Xingxing Zhao, and Peng Liu, “A super lens system for demagnification imaging beyond the diffraction limit,” Plasmonics (2013).
[CrossRef]

Science (2)

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science313(5793), 1595 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Other (1)

Marvin J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of imaging lithography structure with a reflective plasmonic slab.

Fig. 2
Fig. 2

Reflection (a) and OTF (b) for Ag and Ti reflector lithography configuration with variant photo resist thickness. Inset is the schematic of the OTF.

Fig. 3
Fig. 3

(a)~(c) Calculated electric field intensity distributions at 30nm below the Cr-PR interface illuminated with different polarization with a reflective silver slab. The white arrows show the polarization direction. (d) Control simulation result where the reflective silver slab is replaced by fused silica. (e) and (f) are the light distribution in the y-z plane at the positions depicted in (c) and (d). (g) and (h) are the cross-section profiles of (e) and (f) at 10nm, 30nm, and 50nm below the Cr-PR interface.

Fig. 4
Fig. 4

Measured spectrum of i-line mercury lamp illumination in experiment by OCEAN OPTICS USB2000 + . Insets are the simulated images for 360nm and 370nm.

Fig. 5
Fig. 5

(a) SEM photograph of the mask pattern ‘OPEN’ characters with line width of about 36nm and 500nm height. (b) SEM photograph of resist pattern with reflective plasmonic slab and exposure time 16s. (c) Control experiment result without the slab but with the same photoresist thickness, exposure dose and development time as (b). (d) The line width of ‘OPEN’ resist pattern for variant exposure time. LER means line edge roughness.

Fig. 6
Fig. 6

Measured “OPEN” resist pattern by AFM. (a) 2D profile and (b) cross section of (a) at the depicted position.

Fig. 7
Fig. 7

SEM pictures for dense lines array pattern by reflective plasmonic slab lithography with dense lines half pitch of 55nm (a) and 32nm (b) respectively.

Fig. 8
Fig. 8

(a) Optical proximity corrected mask design. (b) Calculated image distribution in the x-y plane at 30nm below the Cr/PR interface with the OPC mask.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T( k x )=( 1+r( k x ) )exp(i k z,d d)= T ( k x )exp(i k z,d d),
r( k x )=( k z,d / ε d k z,m / ε m )/( k z,d / ε d + k z,m / ε m ),
T 2 ε m / ( ε m + ε d ) = 2( ε m ' +i ε m '' ) / [ ( ε m ' + ε d )+i ε m '' ] ,

Metrics