Abstract

We demonstrate a system consisting of a two-dimensional photonic crystal slab and two polarizers which has a tunable transmission lineshape. The lineshape can be tuned from a symmetric Lorentzian to a highly asymmetric Fano lineshape by rotating the output polarizer. We use temporal coupled mode theory to explain the measurement results. The theory also predicts tunable phase shift and group delay.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Rev. Mod. Phys.82, 2257–2298 (2010).
    [CrossRef]
  2. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, Light scattering and Fano resonances in high-Q photonic crystal nanocavities, Appl. Phys. Lett.94, 071101 (2009).
    [CrossRef]
  3. P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
    [CrossRef]
  4. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat Mater9, 707–715 (2010).
    [CrossRef]
  5. U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev.124, 1866–1878 (1961).
    [CrossRef]
  6. S. Fan and J. D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs, Phys. Rev. B65, 235112 (2002).
    [CrossRef]
  7. S. Fan, W. Suh, and J. D. Joannopoulos, Temporal coupled-mode theory for the Fano resonance in optical resonators, J. Opt. Soc. Am. A20, 569–572 (2003).
    [CrossRef]
  8. J. Song, R. P. Zaccaria, M. B. Yu, and X. W. Sun, Tunable Fano resonance in photonic crystal slabs, Opt. Express14, 8812–8826 (2006).
    [CrossRef] [PubMed]
  9. L. Babić and M. J. A. de Dood, Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs, Opt. Express18, 26569–26582 (2010).
    [CrossRef]
  10. W. Suh and S. Fan, Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics, Opt. Lett.28, 1763–1765 (2003).
    [CrossRef] [PubMed]
  11. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers, Opt. Express18, 19120–19128 (2010).
    [CrossRef] [PubMed]
  12. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, Sensitivity enhancement in photonic crystal slab biosensors, Opt. Express18, 22702–22714 (2010).
    [CrossRef] [PubMed]
  13. A. R. Alija, L. J. Martínez, P. A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L. C. Andreani, C. Seassal, and P. Viktorovitch, Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy, Opt. Express15, 704–713 (2007).
    [CrossRef] [PubMed]
  14. L. J. Martínez, A. R. Alija, P. A. Postigo, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, and P. Viktorovitch, Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice, Opt. Express16, 8509–8518 (2008).
    [CrossRef] [PubMed]
  15. A. Bristow, V. Astratov, R. Shimada, I. Culshaw, M. S. Skolnick, D. Whittaker, A. Tahraoui, and T. Krauss, Polarization conversion in the reflectivity properties of photonic crystal waveguides, IEEE J. Quantum Electron.38, 880–884 (2002).
    [CrossRef]
  16. C. Lin, L. J. Martínez, and M. L. Povinelli, Fabrication of transferrable, fully-suspended silicon photonic crystal membranes exhibiting vivid structural color and high-Q guided resonance, J. Vac. Tech. B, in press (2013).
  17. A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness, Appl. Phys. Lett.86, 141101 (2005).
    [CrossRef]
  18. I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, Linear systems approach to describing and classifying Fano resonances, Phys. Rev. B87, 125118 (2013).
    [CrossRef]
  19. J. Ma, L. J. Martínez, and M. L. Povinelli, Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice, Opt. Express20, 6816–6824 (2012).
    [CrossRef] [PubMed]

2013 (3)

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

C. Lin, L. J. Martínez, and M. L. Povinelli, Fabrication of transferrable, fully-suspended silicon photonic crystal membranes exhibiting vivid structural color and high-Q guided resonance, J. Vac. Tech. B, in press (2013).

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, Linear systems approach to describing and classifying Fano resonances, Phys. Rev. B87, 125118 (2013).
[CrossRef]

2012 (1)

2010 (5)

2009 (1)

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, Light scattering and Fano resonances in high-Q photonic crystal nanocavities, Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

2005 (1)

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness, Appl. Phys. Lett.86, 141101 (2005).
[CrossRef]

2003 (2)

2002 (2)

S. Fan and J. D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs, Phys. Rev. B65, 235112 (2002).
[CrossRef]

A. Bristow, V. Astratov, R. Shimada, I. Culshaw, M. S. Skolnick, D. Whittaker, A. Tahraoui, and T. Krauss, Polarization conversion in the reflectivity properties of photonic crystal waveguides, IEEE J. Quantum Electron.38, 880–884 (2002).
[CrossRef]

1961 (1)

U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Alija, A. R.

Andreani, L. C.

Astratov, V.

A. Bristow, V. Astratov, R. Shimada, I. Culshaw, M. S. Skolnick, D. Whittaker, A. Tahraoui, and T. Krauss, Polarization conversion in the reflectivity properties of photonic crystal waveguides, IEEE J. Quantum Electron.38, 880–884 (2002).
[CrossRef]

Avrutsky, I.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, Linear systems approach to describing and classifying Fano resonances, Phys. Rev. B87, 125118 (2013).
[CrossRef]

Babic, L.

Beheiry, M. E.

Belotti, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, Light scattering and Fano resonances in high-Q photonic crystal nanocavities, Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

Bog, U.

Bristow, A.

A. Bristow, V. Astratov, R. Shimada, I. Culshaw, M. S. Skolnick, D. Whittaker, A. Tahraoui, and T. Krauss, Polarization conversion in the reflectivity properties of photonic crystal waveguides, IEEE J. Quantum Electron.38, 880–884 (2002).
[CrossRef]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat Mater9, 707–715 (2010).
[CrossRef]

Culshaw, I.

A. Bristow, V. Astratov, R. Shimada, I. Culshaw, M. S. Skolnick, D. Whittaker, A. Tahraoui, and T. Krauss, Polarization conversion in the reflectivity properties of photonic crystal waveguides, IEEE J. Quantum Electron.38, 880–884 (2002).
[CrossRef]

de Dood, M. J. A.

Dotor, M. L.

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness, Appl. Phys. Lett.86, 141101 (2005).
[CrossRef]

Fan, S.

Fano, U.

U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Fox, A. M.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Galisteo-López, J. F.

Galli, M.

García-Martín, A.

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness, Appl. Phys. Lett.86, 141101 (2005).
[CrossRef]

Gerken, M.

Gibbs, H. M.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, Linear systems approach to describing and classifying Fano resonances, Phys. Rev. B87, 125118 (2013).
[CrossRef]

Gibson, R.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, Linear systems approach to describing and classifying Fano resonances, Phys. Rev. B87, 125118 (2013).
[CrossRef]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat Mater9, 707–715 (2010).
[CrossRef]

Golmayo, D.

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness, Appl. Phys. Lett.86, 141101 (2005).
[CrossRef]

Guimaraes, P. S. S.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat Mater9, 707–715 (2010).
[CrossRef]

Hendrickson, J.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, Linear systems approach to describing and classifying Fano resonances, Phys. Rev. B87, 125118 (2013).
[CrossRef]

Joannopoulos, J. D.

S. Fan, W. Suh, and J. D. Joannopoulos, Temporal coupled-mode theory for the Fano resonance in optical resonators, J. Opt. Soc. Am. A20, 569–572 (2003).
[CrossRef]

S. Fan and J. D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs, Phys. Rev. B65, 235112 (2002).
[CrossRef]

Khitrova, G.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, Linear systems approach to describing and classifying Fano resonances, Phys. Rev. B87, 125118 (2013).
[CrossRef]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Krauss, T.

A. Bristow, V. Astratov, R. Shimada, I. Culshaw, M. S. Skolnick, D. Whittaker, A. Tahraoui, and T. Krauss, Polarization conversion in the reflectivity properties of photonic crystal waveguides, IEEE J. Quantum Electron.38, 880–884 (2002).
[CrossRef]

Krauss, T. F.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, Light scattering and Fano resonances in high-Q photonic crystal nanocavities, Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

Lemmer, U.

Levi, O.

Lin, C.

C. Lin, L. J. Martínez, and M. L. Povinelli, Fabrication of transferrable, fully-suspended silicon photonic crystal membranes exhibiting vivid structural color and high-Q guided resonance, J. Vac. Tech. B, in press (2013).

Liu, V.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat Mater9, 707–715 (2010).
[CrossRef]

Luxmoore, I. J.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Ma, J.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat Mater9, 707–715 (2010).
[CrossRef]

Mappes, T.

Martínez, L. J.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Nazirizadeh, Y.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat Mater9, 707–715 (2010).
[CrossRef]

O’Faolain, L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, Light scattering and Fano resonances in high-Q photonic crystal nanocavities, Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

Patrini, M.

Politi, A.

Portalupi, S. L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, Light scattering and Fano resonances in high-Q photonic crystal nanocavities, Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

Postigo, P. A.

Povinelli, M. L.

C. Lin, L. J. Martínez, and M. L. Povinelli, Fabrication of transferrable, fully-suspended silicon photonic crystal membranes exhibiting vivid structural color and high-Q guided resonance, J. Vac. Tech. B, in press (2013).

J. Ma, L. J. Martínez, and M. L. Povinelli, Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice, Opt. Express20, 6816–6824 (2012).
[CrossRef] [PubMed]

Sánchez-Dehesa, J.

Sears, J.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, Linear systems approach to describing and classifying Fano resonances, Phys. Rev. B87, 125118 (2013).
[CrossRef]

Seassal, C.

Sekula, S.

Shimada, R.

A. Bristow, V. Astratov, R. Shimada, I. Culshaw, M. S. Skolnick, D. Whittaker, A. Tahraoui, and T. Krauss, Polarization conversion in the reflectivity properties of photonic crystal waveguides, IEEE J. Quantum Electron.38, 880–884 (2002).
[CrossRef]

Skolnick, M. S.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

A. Bristow, V. Astratov, R. Shimada, I. Culshaw, M. S. Skolnick, D. Whittaker, A. Tahraoui, and T. Krauss, Polarization conversion in the reflectivity properties of photonic crystal waveguides, IEEE J. Quantum Electron.38, 880–884 (2002).
[CrossRef]

Song, J.

Suh, W.

Sun, X. W.

Szymanski, D.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Tahraoui, A.

A. Bristow, V. Astratov, R. Shimada, I. Culshaw, M. S. Skolnick, D. Whittaker, A. Tahraoui, and T. Krauss, Polarization conversion in the reflectivity properties of photonic crystal waveguides, IEEE J. Quantum Electron.38, 880–884 (2002).
[CrossRef]

Valentim, P. T.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Vasco, J. P.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Viktorovitch, P.

Vinck-Posada, H.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Whittaker, D.

A. Bristow, V. Astratov, R. Shimada, I. Culshaw, M. S. Skolnick, D. Whittaker, A. Tahraoui, and T. Krauss, Polarization conversion in the reflectivity properties of photonic crystal waveguides, IEEE J. Quantum Electron.38, 880–884 (2002).
[CrossRef]

Whittaker, D. M.

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

Yu, M. B.

Zaccaria, R. P.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat Mater9, 707–715 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, Light scattering and Fano resonances in high-Q photonic crystal nanocavities, Appl. Phys. Lett.94, 071101 (2009).
[CrossRef]

P. T. Valentim, J. P. Vasco, I. J. Luxmoore, D. Szymanski, H. Vinck-Posada, A. M. Fox, D. M. Whittaker, M. S. Skolnick, and P. S. S. Guimaraes, Asymmetry tuning of Fano resonances in GaAs photonic crystal cavities, Appl. Phys. Lett.102, 111112 (2013).
[CrossRef]

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness, Appl. Phys. Lett.86, 141101 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Bristow, V. Astratov, R. Shimada, I. Culshaw, M. S. Skolnick, D. Whittaker, A. Tahraoui, and T. Krauss, Polarization conversion in the reflectivity properties of photonic crystal waveguides, IEEE J. Quantum Electron.38, 880–884 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Tech. B (1)

C. Lin, L. J. Martínez, and M. L. Povinelli, Fabrication of transferrable, fully-suspended silicon photonic crystal membranes exhibiting vivid structural color and high-Q guided resonance, J. Vac. Tech. B, in press (2013).

Nat Mater (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat Mater9, 707–715 (2010).
[CrossRef]

Opt. Express (7)

J. Song, R. P. Zaccaria, M. B. Yu, and X. W. Sun, Tunable Fano resonance in photonic crystal slabs, Opt. Express14, 8812–8826 (2006).
[CrossRef] [PubMed]

L. Babić and M. J. A. de Dood, Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs, Opt. Express18, 26569–26582 (2010).
[CrossRef]

Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers, Opt. Express18, 19120–19128 (2010).
[CrossRef] [PubMed]

M. E. Beheiry, V. Liu, S. Fan, and O. Levi, Sensitivity enhancement in photonic crystal slab biosensors, Opt. Express18, 22702–22714 (2010).
[CrossRef] [PubMed]

A. R. Alija, L. J. Martínez, P. A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L. C. Andreani, C. Seassal, and P. Viktorovitch, Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy, Opt. Express15, 704–713 (2007).
[CrossRef] [PubMed]

L. J. Martínez, A. R. Alija, P. A. Postigo, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, and P. Viktorovitch, Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice, Opt. Express16, 8509–8518 (2008).
[CrossRef] [PubMed]

J. Ma, L. J. Martínez, and M. L. Povinelli, Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice, Opt. Express20, 6816–6824 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev.124, 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (2)

S. Fan and J. D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs, Phys. Rev. B65, 235112 (2002).
[CrossRef]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, Linear systems approach to describing and classifying Fano resonances, Phys. Rev. B87, 125118 (2013).
[CrossRef]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Fano resonances in nanoscale structures, Rev. Mod. Phys.82, 2257–2298 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of system for tuning transmission lineshape.

Fig. 2
Fig. 2

Fabricated structure (a) and simulated transmission spectra of x- and y-polarized incident light (b). The scale bar indicates 1μm.

Fig. 3
Fig. 3

Measured (a) and fitted (b) transmission spectra as a function of the relative angle between polarizers.

Fig. 4
Fig. 4

Measured (a) and fitted (b) spectra for different relative angles between the two polarizers.

Fig. 5
Fig. 5

Pole (red cross) and zeros (blue circles) of transmission coefficients for different θp.

Fig. 6
Fig. 6

Complex amplitude (first column) and phase(second column) and modeled transmission amplitude, phase shift and group delay through second polarizer when θp = 0° ((a),(b),(c)), 60° ((d),(e),(f)), 90° ((g),(h),(i)).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

t d 1 = t d 0 ( cos θ i x ^ + sin θ i y ^ )
t g 1 = t g 0 cos θ i x ^
t g 0 = f 1 1 + j ε
t d 2 = t d 0 [ cos θ i cos ( θ i + θ p ) + sin θ i sin ( θ i + θ p ) ] p ^ = t d 0 cos θ p p ^
t g 2 = t g 0 cos θ i cos ( θ i + θ p ) p ^
t = t d 2 + t g 2 = j p ^ cos θ p t d 0 ε + q 1 + j ε
T = | t | 2 = | t d 2 + t g 2 | 2 = cos 2 θ p | t d 0 | 2 | ε + q | 2 1 + ε 2
q = j r d 0 t d 0 cos θ i cos ( θ i + θ p ) cos θ p j cos θ p cos θ i cos ( θ i + θ p ) cos θ p
t = p ^ T ε ε z ε ε p
T = cos θ p t d 0
ε z = q
ε p = j

Metrics