Abstract

This paper presents a novel Indium Phosphide based photonic integrated circuit (PIC) for all-optical regeneration of both nonreturn-to-zero (NRZ) and return-to-zero (RZ) on-off-keying (OOK) signals. The PIC exploits cross gain compression in two semiconductor optical amplifiers to simultaneously obtain a wavelength-preserved and reshaped copy, and a wavelength-converted yet inverted copy of the input signal. Regeneration of 10 Gb/s signals on multiple wavelengths is demonstrated, showing a Q-factor improvement from 1.5 to 4 for NRZ-OOK signals and from 2.3 to 3.6 for RZ-OOK signals, and a BER improvement up to 1.5 decades.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw.53(7), 926–944 (2009).
    [CrossRef]
  2. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol.21(11), 2779–2790 (2003).
    [CrossRef]
  3. M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron.18, 738–752 (2012).
  4. E. Ciaramella, “Wavelength conversion and all-optical regeneration: achievements and open Issues,” J. Lightwave Technol.30(4), 572–582 (2012).
    [CrossRef]
  5. J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-Shifted Fiber,” IEEE Photon. Technol. Lett.17(2), 423–425 (2005).
    [CrossRef]
  6. J. De Merlier, G. Morthier, P. Van Daele, I. Moerman, and R. Baets, “All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA,” Electron. Lett.38(5), 238–239 (2002).
    [CrossRef]
  7. G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol.25(3), 915–921 (2007).
    [CrossRef]
  8. http://paradigm.jeppix.eu
  9. N. Andriolli, F. Bontempi, S. Faralli, E. Ciaramella, and G. Contestabile, “A novel photonic integrated regenerator,” in OFC/NFOEC2013 Tech. Dig., Los Angeles, CA, Mar. 17–21, 2013, paper OW3J.4.
    [CrossRef]
  10. G. Contestabile, M. Presi, R. Proietti, and E. Ciaramella, “Optical reshaping of 40-Gb/s NRZ and RZ signals without wavelength conversion,” IEEE Photon. Technol. Lett.20(13), 1133–1135 (2008).
    [CrossRef]
  11. G. Contestabile, M. Presi, R. Proietti, N. Calabretta, and E. Ciaramella, “A simple and low-power optical limiter for multi-GHz pulse trains,” Opt. Express15(15), 9849–9858 (2007).
    [CrossRef] [PubMed]
  12. 86100A/B/C Infiniium DCA, Agilent [Online]. Available: http://www.home.agilent.com/agilent/editorial.jspx?cc=US&lc=eng&ckey=98996

2012 (2)

M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron.18, 738–752 (2012).

E. Ciaramella, “Wavelength conversion and all-optical regeneration: achievements and open Issues,” J. Lightwave Technol.30(4), 572–582 (2012).
[CrossRef]

2009 (1)

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw.53(7), 926–944 (2009).
[CrossRef]

2008 (1)

G. Contestabile, M. Presi, R. Proietti, and E. Ciaramella, “Optical reshaping of 40-Gb/s NRZ and RZ signals without wavelength conversion,” IEEE Photon. Technol. Lett.20(13), 1133–1135 (2008).
[CrossRef]

2007 (2)

2005 (1)

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-Shifted Fiber,” IEEE Photon. Technol. Lett.17(2), 423–425 (2005).
[CrossRef]

2003 (1)

2002 (1)

J. De Merlier, G. Morthier, P. Van Daele, I. Moerman, and R. Baets, “All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA,” Electron. Lett.38(5), 238–239 (2002).
[CrossRef]

Azodolmolky, S.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw.53(7), 926–944 (2009).
[CrossRef]

Baets, R.

J. De Merlier, G. Morthier, P. Van Daele, I. Moerman, and R. Baets, “All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA,” Electron. Lett.38(5), 238–239 (2002).
[CrossRef]

Balmefrezol, E.

Brindel, P.

Calabretta, N.

Careglio, D.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw.53(7), 926–944 (2009).
[CrossRef]

Ciaramella, E.

Contestabile, G.

De Merlier, J.

J. De Merlier, G. Morthier, P. Van Daele, I. Moerman, and R. Baets, “All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA,” Electron. Lett.38(5), 238–239 (2002).
[CrossRef]

Kikuchi, K.

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-Shifted Fiber,” IEEE Photon. Technol. Lett.17(2), 423–425 (2005).
[CrossRef]

Klinkowski, M.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw.53(7), 926–944 (2009).
[CrossRef]

Lavigne, B.

Leclerc, O.

Marin, E.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw.53(7), 926–944 (2009).
[CrossRef]

Matsumoto, M.

M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron.18, 738–752 (2012).

Moerman, I.

J. De Merlier, G. Morthier, P. Van Daele, I. Moerman, and R. Baets, “All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA,” Electron. Lett.38(5), 238–239 (2002).
[CrossRef]

Morthier, G.

J. De Merlier, G. Morthier, P. Van Daele, I. Moerman, and R. Baets, “All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA,” Electron. Lett.38(5), 238–239 (2002).
[CrossRef]

Ozeki, Y.

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-Shifted Fiber,” IEEE Photon. Technol. Lett.17(2), 423–425 (2005).
[CrossRef]

Pareta, J.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw.53(7), 926–944 (2009).
[CrossRef]

Pierre, L.

Presi, M.

G. Contestabile, M. Presi, R. Proietti, and E. Ciaramella, “Optical reshaping of 40-Gb/s NRZ and RZ signals without wavelength conversion,” IEEE Photon. Technol. Lett.20(13), 1133–1135 (2008).
[CrossRef]

G. Contestabile, M. Presi, R. Proietti, N. Calabretta, and E. Ciaramella, “A simple and low-power optical limiter for multi-GHz pulse trains,” Opt. Express15(15), 9849–9858 (2007).
[CrossRef] [PubMed]

Proietti, R.

Rouvillain, D.

Seguineau, F.

Suzuki, J.

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-Shifted Fiber,” IEEE Photon. Technol. Lett.17(2), 423–425 (2005).
[CrossRef]

Taira, K.

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-Shifted Fiber,” IEEE Photon. Technol. Lett.17(2), 423–425 (2005).
[CrossRef]

Tanemura, T.

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-Shifted Fiber,” IEEE Photon. Technol. Lett.17(2), 423–425 (2005).
[CrossRef]

Tomkos, I.

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw.53(7), 926–944 (2009).
[CrossRef]

Van Daele, P.

J. De Merlier, G. Morthier, P. Van Daele, I. Moerman, and R. Baets, “All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA,” Electron. Lett.38(5), 238–239 (2002).
[CrossRef]

Comput. Netw. (1)

S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, “A survey on physical layer impairments aware routing and wavelength assignment algorithms in optical networks,” Comput. Netw.53(7), 926–944 (2009).
[CrossRef]

Electron. Lett. (1)

J. De Merlier, G. Morthier, P. Van Daele, I. Moerman, and R. Baets, “All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA,” Electron. Lett.38(5), 238–239 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron.18, 738–752 (2012).

IEEE Photon. Technol. Lett. (2)

G. Contestabile, M. Presi, R. Proietti, and E. Ciaramella, “Optical reshaping of 40-Gb/s NRZ and RZ signals without wavelength conversion,” IEEE Photon. Technol. Lett.20(13), 1133–1135 (2008).
[CrossRef]

J. Suzuki, T. Tanemura, K. Taira, Y. Ozeki, and K. Kikuchi, “All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-Shifted Fiber,” IEEE Photon. Technol. Lett.17(2), 423–425 (2005).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (3)

86100A/B/C Infiniium DCA, Agilent [Online]. Available: http://www.home.agilent.com/agilent/editorial.jspx?cc=US&lc=eng&ckey=98996

http://paradigm.jeppix.eu

N. Andriolli, F. Bontempi, S. Faralli, E. Ciaramella, and G. Contestabile, “A novel photonic integrated regenerator,” in OFC/NFOEC2013 Tech. Dig., Los Angeles, CA, Mar. 17–21, 2013, paper OW3J.4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

All-optical regenerator. (a) Scheme. (b) Picture of the fabricated PIC (1 × 6 mm2).

Fig. 2
Fig. 2

(a) Fiber-to-fiber input/output power for a signal at 1550 nm crossing the test SOA, driven with a current of 150 mA. (b) Recovery time (1/e) of the integrated semiconductor optical amplifier measured by the pulse and probe technique.

Fig. 3
Fig. 3

Normalized spectra. (a) BPF1, BPF2, and ASE from test SOA located in the first test chip. (b) BPF1 and BPF2 located in the second test chip.

Fig. 4
Fig. 4

Experimental setup. Insets: eye diagrams of the NRZ signals without noise loading on a time scale of 20 ps/div and normalized output spectrum.

Fig. 5
Fig. 5

Regeneration of NRZ signals. (a) Input/output Q-factor evolution for different OSNR (measured on 0.1 nm RBW). (b) Input (upper line) and output (lower line) eye diagrams for different OSNR values.

Fig. 6
Fig. 6

BER vs. Input Power of the NRZ signal before (solid points) and after (open points) all optical regenerator at different OSNR (measured on 0.1 nm RBW).

Fig. 7
Fig. 7

Regeneration of RZ signals. (a) Input/output Q-factor evolution for different OSNR (measured on 0.1 nm RBW). (b) Input (upper line) and output (lower line) eye diagrams for different OSNR values.

Fig. 8
Fig. 8

BER vs. input power of the RZ signal before (solid points) and after (open points) all optical regeneration. (a) Different OSNR (measured on 0.1 nm RBW) with input signal at 1538.4nm. (b) Different signal wavelengths with OSNR = 20dB (measured on 0.1 nm RBW).

Metrics