Abstract

The present work demonstrates a fibre-laser system with automatic electronic-controlled triggering of dissipative soliton generation mode. Passive mode locking based on the effect of non-linear polarisation evolution has been achieved through a polarisation controller containing a single low-voltage liquid crystal plate whose optimal wave delay was determined from analysis of inter-mode beat spectrum of the output radiation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation,” Electron. Lett.28(15), 1391–1393 (1992).
    [CrossRef]
  2. M. E. Fermann, Nonlinear polarization evolution in passively mode-locked fiber lasers (Cambridge University Press, 1995), Chapter 5.
  3. B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics4(5), 307–311 (2010), http://www.nature.com/nphoton/journal/v4/n5/full/nphoton.2010.33.html .
    [CrossRef]
  4. S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, Mode-Locked Fibre Lasers with High-Energy Pulses (InTech, 2011), Chapter 3.
  5. W. H. Renninger and F. W. Wise, Dissipative soliton fiber lasers (Wiley-VCH Verlag GmbH & Co. KgaA, 2012), Chapter 4.
  6. F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Opt. Express11(26), 3550–3554 (2003).
    [CrossRef] [PubMed]
  7. S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express16(26), 21936–21941 (2008).
    [CrossRef] [PubMed]
  8. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun.272(2), 431–434 (2007), http://www.sciencedirect.com/science/article/pii/S0030401806012879 .
    [CrossRef]
  9. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett.29(5), 498–500 (2004).
    [CrossRef] [PubMed]
  10. B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, and F. Ö. Ilday, “Generation of parabolic bound pulses from a Yb-fiber laser,” Opt. Express14(13), 6075–6083 (2006).
    [CrossRef] [PubMed]
  11. J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(1), 016613 (2007).
    [CrossRef] [PubMed]
  12. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron.18(1), 389–398 (2012).
    [CrossRef] [PubMed]
  13. S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express20(24), 27447–27453 (2012).
    [CrossRef] [PubMed]
  14. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012), http://www.nature.com/nphoton/journal/v6/n2/abs/nphoton.2011.345.html?WT.mc_id=TWT_NaturePhotonics .
    [CrossRef]
  15. N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliiptical core deformation and stress anisotropy,” IEEE J. Quantum Electron.16(11), 1267–1271 (1980).
    [CrossRef]
  16. E. Collett, Polarization Controllers, (The PolaWave Group, 2003), Chapter 9.
  17. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14(21), 10095–10100 (2006).
    [CrossRef] [PubMed]
  18. A. Yariv and A. Yariv, Optical waves in crystals: propagation and control of laser radiation, Wiley-Interscience, 2002.
  19. Z. Zhuang, S. W. Suh, and J. S. Patel, “Polarization controller using nematic liquid crystals,” Opt. Lett.24(10), 694–696 (1999).
    [CrossRef] [PubMed]
  20. S. M. Kelly and M. O’Neill, Liquid crystals for electro-optic applications (Academic Press, 2000), Chapter 1.
  21. A. Safrani and I. Abdulhalim, “Liquid-crystal polarization rotator and a tunable polarizer,” Opt. Lett.34(12), 1801–1803 (2009).
    [CrossRef] [PubMed]
  22. L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett.96(24), 241104 (2010), http://apl.aip.org/resource/1/applab/v96/i24/p241104_s1?bypassSSO=1 .
    [CrossRef]
  23. A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol.29(17), 2560–2569 (2011).
    [CrossRef]
  24. D. A. Radnatarov, S. A. Khripunov, A. V. Ivanenko, and S. M. Kobtsev, “Mode-locked Er fibre laser with variable wave plate based on liquid crystal,” in ICONO/LAT-2013 Conference, Technical Digest (CD) (Russian Academy of Sciences, Moscow, 2013), paper LWF2.
  25. N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Springer, 2005.
  26. A. Chong, W. H. Renninger, and F. W. Wise, “Propeties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25(2), 140–148 (2008).
    [CrossRef]

2012

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron.18(1), 389–398 (2012).
[CrossRef] [PubMed]

S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express20(24), 27447–27453 (2012).
[CrossRef] [PubMed]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012), http://www.nature.com/nphoton/journal/v6/n2/abs/nphoton.2011.345.html?WT.mc_id=TWT_NaturePhotonics .
[CrossRef]

2011

2010

B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics4(5), 307–311 (2010), http://www.nature.com/nphoton/journal/v4/n5/full/nphoton.2010.33.html .
[CrossRef]

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett.96(24), 241104 (2010), http://apl.aip.org/resource/1/applab/v96/i24/p241104_s1?bypassSSO=1 .
[CrossRef]

2009

2008

2007

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun.272(2), 431–434 (2007), http://www.sciencedirect.com/science/article/pii/S0030401806012879 .
[CrossRef]

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(1), 016613 (2007).
[CrossRef] [PubMed]

2006

2004

2003

1999

1992

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation,” Electron. Lett.28(15), 1391–1393 (1992).
[CrossRef]

1980

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliiptical core deformation and stress anisotropy,” IEEE J. Quantum Electron.16(11), 1267–1271 (1980).
[CrossRef]

Abdulhalim, I.

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012), http://www.nature.com/nphoton/journal/v6/n2/abs/nphoton.2011.345.html?WT.mc_id=TWT_NaturePhotonics .
[CrossRef]

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(1), 016613 (2007).
[CrossRef] [PubMed]

Alkeskjold, T. T.

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett.96(24), 241104 (2010), http://apl.aip.org/resource/1/applab/v96/i24/p241104_s1?bypassSSO=1 .
[CrossRef]

Bjarklev, A.

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett.96(24), 241104 (2010), http://apl.aip.org/resource/1/applab/v96/i24/p241104_s1?bypassSSO=1 .
[CrossRef]

Brunel, M.

Buckley, J.

Chédot, C.

Cheng, T. H.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun.272(2), 431–434 (2007), http://www.sciencedirect.com/science/article/pii/S0030401806012879 .
[CrossRef]

Chong, A.

Devine, N.

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(1), 016613 (2007).
[CrossRef] [PubMed]

Fedotov, Y.

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012), http://www.nature.com/nphoton/journal/v6/n2/abs/nphoton.2011.345.html?WT.mc_id=TWT_NaturePhotonics .
[CrossRef]

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(1), 016613 (2007).
[CrossRef] [PubMed]

Hideur, A.

Hirooka, T.

Ilday, F.

Ilday, F. Ö.

Ilday, Ö.

B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics4(5), 307–311 (2010), http://www.nature.com/nphoton/journal/v4/n5/full/nphoton.2010.33.html .
[CrossRef]

Imoto, N.

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliiptical core deformation and stress anisotropy,” IEEE J. Quantum Electron.16(11), 1267–1271 (1980).
[CrossRef]

Ivanenko, A.

Kobtsev, S.

Kriezis, E. E.

Kukarin, S.

Kuznetsova, L.

Limpert, J.

Lu, C.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun.272(2), 431–434 (2007), http://www.sciencedirect.com/science/article/pii/S0030401806012879 .
[CrossRef]

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation,” Electron. Lett.28(15), 1391–1393 (1992).
[CrossRef]

Nakazawa, M.

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation,” Electron. Lett.28(15), 1391–1393 (1992).
[CrossRef]

Oktem, B.

B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics4(5), 307–311 (2010), http://www.nature.com/nphoton/journal/v4/n5/full/nphoton.2010.33.html .
[CrossRef]

Ortaç, B.

Patel, J. S.

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation,” Electron. Lett.28(15), 1391–1393 (1992).
[CrossRef]

Pitilakis, A. K.

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron.18(1), 389–398 (2012).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “Propeties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25(2), 140–148 (2008).
[CrossRef]

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation,” Electron. Lett.28(15), 1391–1393 (1992).
[CrossRef]

Safrani, A.

Sakai, J.

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliiptical core deformation and stress anisotropy,” IEEE J. Quantum Electron.16(11), 1267–1271 (1980).
[CrossRef]

Smirnov, S.

Soto-Crespo, J. M.

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(1), 016613 (2007).
[CrossRef] [PubMed]

Suh, S. W.

Tang, D. Y.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun.272(2), 431–434 (2007), http://www.sciencedirect.com/science/article/pii/S0030401806012879 .
[CrossRef]

Tsuchiya, H.

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliiptical core deformation and stress anisotropy,” IEEE J. Quantum Electron.16(11), 1267–1271 (1980).
[CrossRef]

Tünnermann, A.

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics4(5), 307–311 (2010), http://www.nature.com/nphoton/journal/v4/n5/full/nphoton.2010.33.html .
[CrossRef]

Wei, L.

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett.96(24), 241104 (2010), http://apl.aip.org/resource/1/applab/v96/i24/p241104_s1?bypassSSO=1 .
[CrossRef]

Wise, F.

Wise, F. W.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron.18(1), 389–398 (2012).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “Propeties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B25(2), 140–148 (2008).
[CrossRef]

Yoshizawa, N.

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliiptical core deformation and stress anisotropy,” IEEE J. Quantum Electron.16(11), 1267–1271 (1980).
[CrossRef]

Zhao, L. M.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun.272(2), 431–434 (2007), http://www.sciencedirect.com/science/article/pii/S0030401806012879 .
[CrossRef]

Zhuang, Z.

Zografopoulos, D. C.

Appl. Phys. Lett.

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett.96(24), 241104 (2010), http://apl.aip.org/resource/1/applab/v96/i24/p241104_s1?bypassSSO=1 .
[CrossRef]

Electron. Lett.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting, passively mode-locked fibre ring soliton laser exploiting non-linear polarisation rotation,” Electron. Lett.28(15), 1391–1393 (1992).
[CrossRef]

IEEE J. Quantum Electron.

N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliiptical core deformation and stress anisotropy,” IEEE J. Quantum Electron.16(11), 1267–1271 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron.18(1), 389–398 (2012).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photonics

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012), http://www.nature.com/nphoton/journal/v6/n2/abs/nphoton.2011.345.html?WT.mc_id=TWT_NaturePhotonics .
[CrossRef]

B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics4(5), 307–311 (2010), http://www.nature.com/nphoton/journal/v4/n5/full/nphoton.2010.33.html .
[CrossRef]

Opt. Commun.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun.272(2), 431–434 (2007), http://www.sciencedirect.com/science/article/pii/S0030401806012879 .
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(1), 016613 (2007).
[CrossRef] [PubMed]

Other

A. Yariv and A. Yariv, Optical waves in crystals: propagation and control of laser radiation, Wiley-Interscience, 2002.

E. Collett, Polarization Controllers, (The PolaWave Group, 2003), Chapter 9.

S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, Mode-Locked Fibre Lasers with High-Energy Pulses (InTech, 2011), Chapter 3.

W. H. Renninger and F. W. Wise, Dissipative soliton fiber lasers (Wiley-VCH Verlag GmbH & Co. KgaA, 2012), Chapter 4.

M. E. Fermann, Nonlinear polarization evolution in passively mode-locked fiber lasers (Cambridge University Press, 1995), Chapter 5.

S. M. Kelly and M. O’Neill, Liquid crystals for electro-optic applications (Academic Press, 2000), Chapter 1.

D. A. Radnatarov, S. A. Khripunov, A. V. Ivanenko, and S. M. Kobtsev, “Mode-locked Er fibre laser with variable wave plate based on liquid crystal,” in ICONO/LAT-2013 Conference, Technical Digest (CD) (Russian Academy of Sciences, Moscow, 2013), paper LWF2.

N. N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Springer, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental layout.

Fig. 2
Fig. 2

RF inter-mode beat laser spectrum around 8 MHz typical of the most stable (a) and less stable (b) mode-locked operation.

Fig. 3
Fig. 3

Time diagram of the programmatically controlled laser mode lock starting: P – pump radiation power; V – control voltage on the liquid crystal plate; dashed line – dependence of the magnitude of the peak of the radio-frequency inter-mode beat spectrum on the voltage applied to the liquid crystal cell.

Fig. 4
Fig. 4

Left – Optical spectrum of the output radiation at the pump power equal to Pthr; right – output radiation spectrum at the pump power equal to Pw.

Fig. 5
Fig. 5

The recorded auto-correlation function of the laser’s output.

Metrics