Abstract

We report the formation of microcavity polaritons in a dielectric microcavity embedded with solution processed ZnO nanoparticles. Evidence of strong coupling between the excitons and cavity photons is demonstrated via anticrossing in the dispersion of the polariton states. At low temperatures (<150K), multiple polariton states arising due to coupling between different excitonic states and the cavity mode is observed. Rabi splitting of ~90 meV is shown to persist even at room temperature in the ZnO – dielectric microcavity.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
    [CrossRef] [PubMed]
  2. H. Deng and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010).
    [CrossRef]
  3. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  4. S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
    [CrossRef]
  5. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002).
    [CrossRef]
  6. S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008).
    [CrossRef]
  7. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser,” Phys. Rev. Lett.107(6), 066405 (2011).
    [CrossRef] [PubMed]
  8. S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
    [CrossRef] [PubMed]
  9. U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
    [CrossRef]
  10. L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
    [CrossRef]
  11. T.-C. Lu, Y.-Y. Lai, Y.-P. Lan, S.-W. Huang, J.-R. Chen, Y.-C. Wu, W.-F. Hsieh, and H. Deng, “Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity,” Opt. Express20(5), 5530–5537 (2012).
    [CrossRef] [PubMed]
  12. A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express20(11), 11830–11837 (2012).
    [CrossRef] [PubMed]
  13. F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
    [CrossRef] [PubMed]
  14. W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids58(6), 853–857 (1997).
    [CrossRef]
  15. M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
    [CrossRef]
  16. Y. S. Park and J. R. Schneider, “Index of Refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968).
    [CrossRef]
  17. Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, “Exciton Spectrum of ZnO,” Phys. Rev.143(2), 512–519 (1966).
    [CrossRef]
  18. W. Y. Liang and A. D. Yoffe, “Transmission Spectra of ZnO Single Crystals,” Phys. Rev. Lett.20(2), 59–62 (1968).
    [CrossRef]
  19. J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition,” J. Appl. Phys.85(11), 7884–7887 (1999).
    [CrossRef]
  20. G. Pozina, L. L. Yang, Q. X. Zhao, L. Hultman, and P. G. Lagoudakis, “Size dependent carrier recombination in ZnO nanocrystals,” Appl. Phys. Lett.97(13), 131909 (2010).
    [CrossRef]
  21. J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-F. Hsieh, S.-C. Wang, and H. Deng, “Characteristics of exciton-polaritons in ZnO-based hybrid microcavities,” Opt. Express19(5), 4101–4112 (2011).
    [CrossRef] [PubMed]
  22. F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
    [CrossRef]

2013

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

2012

2011

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

J.-R. Chen, T.-C. Lu, Y.-C. Wu, S.-C. Lin, W.-F. Hsieh, S.-C. Wang, and H. Deng, “Characteristics of exciton-polaritons in ZnO-based hybrid microcavities,” Opt. Express19(5), 4101–4112 (2011).
[CrossRef] [PubMed]

2010

G. Pozina, L. L. Yang, Q. X. Zhao, L. Hultman, and P. G. Lagoudakis, “Size dependent carrier recombination in ZnO nanocrystals,” Appl. Phys. Lett.97(13), 131909 (2010).
[CrossRef]

H. Deng and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010).
[CrossRef]

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

2009

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

2008

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008).
[CrossRef]

2007

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

2005

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

2003

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2002

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002).
[CrossRef]

1999

J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition,” J. Appl. Phys.85(11), 7884–7887 (1999).
[CrossRef]

1997

W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids58(6), 853–857 (1997).
[CrossRef]

1992

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

1968

W. Y. Liang and A. D. Yoffe, “Transmission Spectra of ZnO Single Crystals,” Phys. Rev. Lett.20(2), 59–62 (1968).
[CrossRef]

Y. S. Park and J. R. Schneider, “Index of Refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968).
[CrossRef]

1966

Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, “Exciton Spectrum of ZnO,” Phys. Rev.143(2), 512–519 (1966).
[CrossRef]

Alivov, Y. I.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Avrutin, V.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Baumberg, J. J.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Bayraktaroglu, A.

Bhattacharya, P.

A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express20(11), 11830–11837 (2012).
[CrossRef] [PubMed]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Bouchoule, S.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

Bretagnon, T.

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008).
[CrossRef]

Brimont, C.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

Buell, D. A.

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

Butté, R.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Carlin, J.-F.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Chen, J.-R.

Cho, S. J.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Christmann, G.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Christopoulos, S.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Collins, T. C.

Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, “Exciton Spectrum of ZnO,” Phys. Rev.143(2), 512–519 (1966).
[CrossRef]

Das, A.

A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express20(11), 11830–11837 (2012).
[CrossRef] [PubMed]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Deng, H.

Disseix, P.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

Dogan, S.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Faure, S.

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008).
[CrossRef]

Feltin, E.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Feng, D.

W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids58(6), 853–857 (1997).
[CrossRef]

Forrest, S. R.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

Frayssinet, E.

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

Gil, B.

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008).
[CrossRef]

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002).
[CrossRef]

Grandjean, N.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Grundy, A. J.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Guillet, T.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008).
[CrossRef]

Guo, W.

A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express20(11), 11830–11837 (2012).
[CrossRef] [PubMed]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Henneghien, A.-L.

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

Heo, J.

A. Das, J. Heo, A. Bayraktaroglu, W. Guo, T.-K. Ng, J. Phillips, B. S. Ooi, and P. Bhattacharya, “Room temperature strong coupling effects from single ZnO nanowire microcavity,” Opt. Express20(11), 11830–11837 (2012).
[CrossRef] [PubMed]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Hsieh, W.-F.

Hu, W. S.

W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids58(6), 853–857 (1997).
[CrossRef]

Huang, S.-W.

Hultman, L.

G. Pozina, L. L. Yang, Q. X. Zhao, L. Hultman, and P. G. Lagoudakis, “Size dependent carrier recombination in ZnO nanocrystals,” Appl. Phys. Lett.97(13), 131909 (2010).
[CrossRef]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Jankowski, M.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Ji, Z. M.

W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids58(6), 853–857 (1997).
[CrossRef]

Kaliteevski, M.

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002).
[CrossRef]

Kamoun, O.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

Kavokin, A.

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002).
[CrossRef]

Kavokin, A. V.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Kéna-Cohen, S.

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

Kolbas, R. M.

J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition,” J. Appl. Phys.85(11), 7884–7887 (1999).
[CrossRef]

Lafosse, X.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

Lagoudakis, P. G.

G. Pozina, L. L. Yang, Q. X. Zhao, L. Hultman, and P. G. Lagoudakis, “Size dependent carrier recombination in ZnO nanocrystals,” Appl. Phys. Lett.97(13), 131909 (2010).
[CrossRef]

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Lai, Y.-Y.

Lan, Y.-P.

Lefebvre, P.

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008).
[CrossRef]

Leroux, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

Leymarie, J.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

Li, F.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

Liang, W. Y.

W. Y. Liang and A. D. Yoffe, “Transmission Spectra of ZnO Single Crystals,” Phys. Rev. Lett.20(2), 59–62 (1968).
[CrossRef]

Lin, S.-C.

Litton, C. W.

Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, “Exciton Spectrum of ZnO,” Phys. Rev.143(2), 512–519 (1966).
[CrossRef]

Liu, C.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Liu, Z. G.

W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids58(6), 853–857 (1997).
[CrossRef]

Lu, T.-C.

Malpuech, G.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002).
[CrossRef]

Médard, F.

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

Mexis, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

Mihailovic, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

Moreno, J.

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

Morhain, C.

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

Morkoc, H.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Muth, J. F.

J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition,” J. Appl. Phys.85(11), 7884–7887 (1999).
[CrossRef]

Narayan, J.

J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition,” J. Appl. Phys.85(11), 7884–7887 (1999).
[CrossRef]

Ng, T.-K.

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Oktyabrsky, S.

J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition,” J. Appl. Phys.85(11), 7884–7887 (1999).
[CrossRef]

Ooi, B. S.

Orosz, L.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

Özgür, U.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Park, Y. S.

Y. S. Park and J. R. Schneider, “Index of Refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968).
[CrossRef]

Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, “Exciton Spectrum of ZnO,” Phys. Rev.143(2), 512–519 (1966).
[CrossRef]

Patriarche, G.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

Phillips, J.

Pozina, G.

G. Pozina, L. L. Yang, Q. X. Zhao, L. Hultman, and P. G. Lagoudakis, “Size dependent carrier recombination in ZnO nanocrystals,” Appl. Phys. Lett.97(13), 131909 (2010).
[CrossRef]

Reshchikov, M. A.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Réveret, F.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

Reynolds, D. C.

Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, “Exciton Spectrum of ZnO,” Phys. Rev.143(2), 512–519 (1966).
[CrossRef]

Schneider, J. R.

Y. S. Park and J. R. Schneider, “Index of Refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968).
[CrossRef]

Semond, F.

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

Sharma, A. K.

J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition,” J. Appl. Phys.85(11), 7884–7887 (1999).
[CrossRef]

Solnyshkov, D.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

Sun, J.

W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids58(6), 853–857 (1997).
[CrossRef]

Teke, A.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Vasson, A.

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

von Högersthal, G. B.

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

Wang, S.-C.

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

Wu, Y.-C.

Xu, Q. Q.

W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids58(6), 853–857 (1997).
[CrossRef]

Yamamoto, Y.

H. Deng and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010).
[CrossRef]

Yang, L. L.

G. Pozina, L. L. Yang, Q. X. Zhao, L. Hultman, and P. G. Lagoudakis, “Size dependent carrier recombination in ZnO nanocrystals,” Appl. Phys. Lett.97(13), 131909 (2010).
[CrossRef]

Yoffe, A. D.

W. Y. Liang and A. D. Yoffe, “Transmission Spectra of ZnO Single Crystals,” Phys. Rev. Lett.20(2), 59–62 (1968).
[CrossRef]

Zamfirescu, M.

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002).
[CrossRef]

Zhang, L.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

Zhao, Q. X.

G. Pozina, L. L. Yang, Q. X. Zhao, L. Hultman, and P. G. Lagoudakis, “Size dependent carrier recombination in ZnO nanocrystals,” Appl. Phys. Lett.97(13), 131909 (2010).
[CrossRef]

Zhu, S. N.

W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids58(6), 853–857 (1997).
[CrossRef]

Zùñiga Pérez, J.

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

Zuniga-Perez, J.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

Zuniga-Pérez, J.

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

Appl. Phys. Lett.

G. Pozina, L. L. Yang, Q. X. Zhao, L. Hultman, and P. G. Lagoudakis, “Size dependent carrier recombination in ZnO nanocrystals,” Appl. Phys. Lett.97(13), 131909 (2010).
[CrossRef]

J. Appl. Phys.

U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Y. S. Park and J. R. Schneider, “Index of Refraction of ZnO,” J. Appl. Phys.39(7), 3049–3052 (1968).
[CrossRef]

J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, “Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition,” J. Appl. Phys.85(11), 7884–7887 (1999).
[CrossRef]

J. Phys. Chem. Solids

W. S. Hu, Z. G. Liu, J. Sun, S. N. Zhu, Q. Q. Xu, D. Feng, and Z. M. Ji, “Optical properties of pulsed laser deposited ZnO thin films,” J. Phys. Chem. Solids58(6), 853–857 (1997).
[CrossRef]

Nat. Photonics

S. Kéna-Cohen and S. R. Forrest, “Room-temperature polariton lasing in an organic single-crystal microcavity,” Nat. Photonics4(6), 371–375 (2010).
[CrossRef]

Nature

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater.

M. Mihailovic, A.-L. Henneghien, S. Faure, P. Disseix, J. Leymarie, A. Vasson, D. A. Buell, F. Semond, C. Morhain, and J. Zùñiga Pérez, “Optical and excitonic properties of ZnO films,” Opt. Mater.31(3), 532–536 (2009).
[CrossRef]

Phys. Rev.

Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, “Exciton Spectrum of ZnO,” Phys. Rev.143(2), 512–519 (1966).
[CrossRef]

Phys. Rev. B

M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev. B65(16), 161205 (2002).
[CrossRef]

S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B78(23), 235323 (2008).
[CrossRef]

L. Orosz, F. Réveret, F. Médard, P. Disseix, J. Leymarie, M. Mihailovic, D. Solnyshkov, G. Malpuech, J. Zuniga-Pérez, F. Semond, M. Leroux, S. Bouchoule, X. Lafosse, M. Mexis, C. Brimont, and T. Guillet, “LO-phonon-assisted polariton lasing in a ZnO-based microcavity,” Phys. Rev. B85(12), 121201 (2012).
[CrossRef]

F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J. Moreno, M. Leroux, S. Faure, and T. Guillet, “Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption,” Phys. Rev. B79(12), 125302 (2009).
[CrossRef]

Phys. Rev. Lett.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett.69(23), 3314–3317 (1992).
[CrossRef] [PubMed]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser,” Phys. Rev. Lett.107(6), 066405 (2011).
[CrossRef] [PubMed]

S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett.98(12), 126405 (2007).
[CrossRef] [PubMed]

W. Y. Liang and A. D. Yoffe, “Transmission Spectra of ZnO Single Crystals,” Phys. Rev. Lett.20(2), 59–62 (1968).
[CrossRef]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From Excitonic to Photonic Polariton Condensate in a ZnO-Based Microcavity,” Phys. Rev. Lett.110(19), 196406 (2013).
[CrossRef] [PubMed]

Rev. Mod. Phys.

H. Deng and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82(2), 1489–1537 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Absorption spectra of the ZnO nanoparticle film at various temperatures. The inset shows the SEM image of spun-cast ZnO nanoparticle film; the scale bar corresponds to 500 nm. (b) Schematic of the microcavity structure.

Fig. 2
Fig. 2

(a) Angle-resolved reflectivity spectra for TM polarized light at 10K. The spectra are stacked with a constant offset of 0.25 between each adjacent spectrum; the vertical dash-dotted lines correspond to the free exciton energies and the dashed curves trace the reflectivity dispersion. (b) Expanded views showing the polariton reflectivity dips at 20°, 30° and 40°.

Fig. 3
Fig. 3

Angle-resolved reflectivity spectra for TM polarization at (a) 77K, (b) 150K and (c) RT; the vertical dash-dotted lines corresponds to the free exciton energies; the dashed curves trace the reflectivity dispersions.

Fig. 4
Fig. 4

The dispersions of the polariton branches extracted from the reflectivity spectra for TM polarization at (a) 10K, (b) 77K, (c) 150K and (d) room temperature. The dashed lines correspond to the free exciton energies; the dashed curve corresponds to the cavity mode; the data points represent the experimental reflectivity dips; and the solid lines correspond to the polariton dispersion obtained using coupled oscillator model. The calculated Rabi splitting is also indicated for the various polariton modes.

Fig. 5
Fig. 5

Angle-resolved PL contour plot at room temperature (RT). The white dashed line at 3.378eV represents the ZnO exciton (FXA) energy; the white dashed curve represents the cavity dispersion; and the white solid line traces the PL peak dispersion.

Tables (1)

Tables Icon

Table 1 Free exciton energies determined from absorption

Metrics