Abstract

We present a novel broken-nanoring, which can realize strongly localized confinement and highly enhancement for both electric and magnetic fields at two resonant modes excited by normal incident azimuthally polarized light. Two resonant modes of the broken-nanoring are formed by different resonant mechanisms as different resonant lengths. The physical model for two resonant modes is also proposed to explain the mechanisms of the electromagnetic enhancement. The enhancement of the electric and magnetic fields can be further improved by adding a nanoring at the outside of the broken-nanoring to form a composite nanoring, which can freely tune or easily merge the resonant modes of the solitary broken-nanoring while keeping larger enhancement of the electric and magnetic fields.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
    [CrossRef]
  2. N. Zhou, E. C. Kinzel, and X. Xu, “Complementary bowtie aperture for localizing and enhancing optical magnetic field,” Opt. Lett.36(15), 2764–2766 (2011).
    [CrossRef] [PubMed]
  3. Z. Gao, L. Shen, E. Li, L. Xu, and Z. Wang, “Cross-diabolo nanoantenna for localizing and enhancing magnetic field with arbitrary polarization,” J. Lightwave Technol.30(6), 829–833 (2012).
    [CrossRef]
  4. T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
    [CrossRef] [PubMed]
  5. M. Lorente-Crespo, L. Wang, R. Ortuño, C. García-Meca, Y. Ekinci, and A. Martínez, “Magnetic hot spots in closely spaced thick gold nanorings,” Nano Lett.13(6), 2654–2661 (2013).
    [CrossRef] [PubMed]
  6. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
    [CrossRef] [PubMed]
  7. C. Granata, E. Esposito, A. Vettoliere, L. Petti, and M. Russo, “An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications,” Nanotechnology19(27), 275501 (2008).
    [CrossRef] [PubMed]
  8. E. Vourch, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
    [CrossRef]
  9. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  10. T. Schumacher, K. Kratzer, D. Molnar, M. Hecntschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
    [CrossRef]
  11. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
    [CrossRef] [PubMed]
  12. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon.5(6), 349–356 (2011).
    [CrossRef]
  13. K. Wang, E. Schonbrun, P. Steinvuzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
    [CrossRef] [PubMed]
  14. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
    [CrossRef] [PubMed]
  15. H. Hong, H.-J. Krause, K. Song, and C.-J. Choi, “In situ analysis of free radicals from the photodecomposition of hydrogen peroxide using a frequency-mixing magnetic detector,” Appl. Phys. Lett.101(5), 054105 (2012).
    [CrossRef]
  16. Y. Yang, H. T. Dai, and X. W. Sun, “Split ring aperture for optical magnetic field enhancement by radially polarized beam,” Opt. Express21(6), 6845–6850 (2013).
    [CrossRef] [PubMed]
  17. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
    [CrossRef] [PubMed]
  18. J. Scheuer, “Ultra-high enhancement of the field concentration in split ring resonators by azimuthally polarized excitation,” Opt. Express19(25), 25454–25464 (2011).
    [CrossRef]
  19. M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun.270(2), 447–454 (2007).
    [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  21. COMSOL 3.4, Comsol Multiphysics, http://www.comsol.com .
  22. S. D. Liu, Z. S. Zhang, and Q. Q. Wang, “High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation,” Opt. Express17(4), 2906–2917 (2009).
    [CrossRef] [PubMed]
  23. J. Li, S. Chen, P. Yu, H. Cheng, W. Zhou, and J. Tian, “Large enhancement and uniform distribution of optical near-field through combining periodic bowtie nanoantenna with rectangular nanoaperture array,” Opt. Lett.36(20), 4014–4016 (2011).
    [CrossRef] [PubMed]

2013

M. Lorente-Crespo, L. Wang, R. Ortuño, C. García-Meca, Y. Ekinci, and A. Martínez, “Magnetic hot spots in closely spaced thick gold nanorings,” Nano Lett.13(6), 2654–2661 (2013).
[CrossRef] [PubMed]

Y. Yang, H. T. Dai, and X. W. Sun, “Split ring aperture for optical magnetic field enhancement by radially polarized beam,” Opt. Express21(6), 6845–6850 (2013).
[CrossRef] [PubMed]

2012

Z. Gao, L. Shen, E. Li, L. Xu, and Z. Wang, “Cross-diabolo nanoantenna for localizing and enhancing magnetic field with arbitrary polarization,” J. Lightwave Technol.30(6), 829–833 (2012).
[CrossRef]

H. Hong, H.-J. Krause, K. Song, and C.-J. Choi, “In situ analysis of free radicals from the photodecomposition of hydrogen peroxide using a frequency-mixing magnetic detector,” Appl. Phys. Lett.101(5), 054105 (2012).
[CrossRef]

2011

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon.5(6), 349–356 (2011).
[CrossRef]

K. Wang, E. Schonbrun, P. Steinvuzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

N. Zhou, E. C. Kinzel, and X. Xu, “Complementary bowtie aperture for localizing and enhancing optical magnetic field,” Opt. Lett.36(15), 2764–2766 (2011).
[CrossRef] [PubMed]

J. Li, S. Chen, P. Yu, H. Cheng, W. Zhou, and J. Tian, “Large enhancement and uniform distribution of optical near-field through combining periodic bowtie nanoantenna with rectangular nanoaperture array,” Opt. Lett.36(20), 4014–4016 (2011).
[CrossRef] [PubMed]

J. Scheuer, “Ultra-high enhancement of the field concentration in split ring resonators by azimuthally polarized excitation,” Opt. Express19(25), 25454–25464 (2011).
[CrossRef]

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

T. Schumacher, K. Kratzer, D. Molnar, M. Hecntschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

2009

E. Vourch, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
[CrossRef]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

S. D. Liu, Z. S. Zhang, and Q. Q. Wang, “High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation,” Opt. Express17(4), 2906–2917 (2009).
[CrossRef] [PubMed]

2008

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

C. Granata, E. Esposito, A. Vettoliere, L. Petti, and M. Russo, “An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications,” Nanotechnology19(27), 275501 (2008).
[CrossRef] [PubMed]

2007

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun.270(2), 447–454 (2007).
[CrossRef]

2006

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

2004

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Baida, F. I.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Burr, G. W.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Charraut, D.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun.270(2), 447–454 (2007).
[CrossRef]

Chen, S.

Cheng, H.

Choi, C.-J.

H. Hong, H.-J. Krause, K. Song, and C.-J. Choi, “In situ analysis of free radicals from the photodecomposition of hydrogen peroxide using a frequency-mixing magnetic detector,” Appl. Phys. Lett.101(5), 054105 (2012).
[CrossRef]

Cima, L.

E. Vourch, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
[CrossRef]

Courjon, D.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun.270(2), 447–454 (2007).
[CrossRef]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvuzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

Dai, H. T.

Ekinci, Y.

M. Lorente-Crespo, L. Wang, R. Ortuño, C. García-Meca, Y. Ekinci, and A. Martínez, “Magnetic hot spots in closely spaced thick gold nanorings,” Nano Lett.13(6), 2654–2661 (2013).
[CrossRef] [PubMed]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Esposito, E.

C. Granata, E. Esposito, A. Vettoliere, L. Petti, and M. Russo, “An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications,” Nanotechnology19(27), 275501 (2008).
[CrossRef] [PubMed]

Fischer, U. C.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Gao, Z.

García-Meca, C.

M. Lorente-Crespo, L. Wang, R. Ortuño, C. García-Meca, Y. Ekinci, and A. Martínez, “Magnetic hot spots in closely spaced thick gold nanorings,” Nano Lett.13(6), 2654–2661 (2013).
[CrossRef] [PubMed]

Giessen, H.

T. Schumacher, K. Kratzer, D. Molnar, M. Hecntschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

Granata, C.

C. Granata, E. Esposito, A. Vettoliere, L. Petti, and M. Russo, “An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications,” Nanotechnology19(27), 275501 (2008).
[CrossRef] [PubMed]

Grosjean, T.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun.270(2), 447–454 (2007).
[CrossRef]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Hecntschel, M.

T. Schumacher, K. Kratzer, D. Molnar, M. Hecntschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

Hong, H.

H. Hong, H.-J. Krause, K. Song, and C.-J. Choi, “In situ analysis of free radicals from the photodecomposition of hydrogen peroxide using a frequency-mixing magnetic detector,” Appl. Phys. Lett.101(5), 054105 (2012).
[CrossRef]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Joubert, P.-Y.

E. Vourch, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
[CrossRef]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon.5(6), 349–356 (2011).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Kinzel, E. C.

Klein, M. W.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Kratzer, K.

T. Schumacher, K. Kratzer, D. Molnar, M. Hecntschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

Krause, H.-J.

H. Hong, H.-J. Krause, K. Song, and C.-J. Choi, “In situ analysis of free radicals from the photodecomposition of hydrogen peroxide using a frequency-mixing magnetic detector,” Appl. Phys. Lett.101(5), 054105 (2012).
[CrossRef]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Li, E.

Li, J.

Linden, S.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Lippitz, M.

T. Schumacher, K. Kratzer, D. Molnar, M. Hecntschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

Liu, S. D.

Lorente-Crespo, M.

M. Lorente-Crespo, L. Wang, R. Ortuño, C. García-Meca, Y. Ekinci, and A. Martínez, “Magnetic hot spots in closely spaced thick gold nanorings,” Nano Lett.13(6), 2654–2661 (2013).
[CrossRef] [PubMed]

Martínez, A.

M. Lorente-Crespo, L. Wang, R. Ortuño, C. García-Meca, Y. Ekinci, and A. Martínez, “Magnetic hot spots in closely spaced thick gold nanorings,” Nano Lett.13(6), 2654–2661 (2013).
[CrossRef] [PubMed]

Mivelle, M.

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Molnar, D.

T. Schumacher, K. Kratzer, D. Molnar, M. Hecntschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Ortuño, R.

M. Lorente-Crespo, L. Wang, R. Ortuño, C. García-Meca, Y. Ekinci, and A. Martínez, “Magnetic hot spots in closely spaced thick gold nanorings,” Nano Lett.13(6), 2654–2661 (2013).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Petti, L.

C. Granata, E. Esposito, A. Vettoliere, L. Petti, and M. Russo, “An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications,” Nanotechnology19(27), 275501 (2008).
[CrossRef] [PubMed]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon.5(6), 349–356 (2011).
[CrossRef]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon.5(6), 349–356 (2011).
[CrossRef]

Russo, M.

C. Granata, E. Esposito, A. Vettoliere, L. Petti, and M. Russo, “An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications,” Nanotechnology19(27), 275501 (2008).
[CrossRef] [PubMed]

Scheuer, J.

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvuzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Schumacher, T.

T. Schumacher, K. Kratzer, D. Molnar, M. Hecntschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Shen, L.

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Song, K.

H. Hong, H.-J. Krause, K. Song, and C.-J. Choi, “In situ analysis of free radicals from the photodecomposition of hydrogen peroxide using a frequency-mixing magnetic detector,” Appl. Phys. Lett.101(5), 054105 (2012).
[CrossRef]

Steinvuzel, P.

K. Wang, E. Schonbrun, P. Steinvuzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

Suarez, M. A.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun.270(2), 447–454 (2007).
[CrossRef]

Sun, X. W.

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Tian, J.

van Hulst, N. F.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Vettoliere, A.

C. Granata, E. Esposito, A. Vettoliere, L. Petti, and M. Russo, “An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications,” Nanotechnology19(27), 275501 (2008).
[CrossRef] [PubMed]

Vourch, E.

E. Vourch, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
[CrossRef]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvuzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

Wang, L.

M. Lorente-Crespo, L. Wang, R. Ortuño, C. García-Meca, Y. Ekinci, and A. Martínez, “Magnetic hot spots in closely spaced thick gold nanorings,” Nano Lett.13(6), 2654–2661 (2013).
[CrossRef] [PubMed]

Wang, Q. Q.

Wang, Z.

Wegener, M.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

Xu, L.

Xu, X.

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Yang, Y.

Yu, P.

Zhang, Z. S.

Zhou, N.

Zhou, W.

Appl. Phys. Lett.

H. Hong, H.-J. Krause, K. Song, and C.-J. Choi, “In situ analysis of free radicals from the photodecomposition of hydrogen peroxide using a frequency-mixing magnetic detector,” Appl. Phys. Lett.101(5), 054105 (2012).
[CrossRef]

J. Lightwave Technol.

Nano Lett.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

T. Grosjean, M. Mivelle, F. I. Baida, G. W. Burr, and U. C. Fischer, “Diabolo nanoantenna for enhancing and confining the magnetic optical field,” Nano Lett.11(3), 1009–1013 (2011).
[CrossRef] [PubMed]

M. Lorente-Crespo, L. Wang, R. Ortuño, C. García-Meca, Y. Ekinci, and A. Martínez, “Magnetic hot spots in closely spaced thick gold nanorings,” Nano Lett.13(6), 2654–2661 (2013).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Nanotechnology

C. Granata, E. Esposito, A. Vettoliere, L. Petti, and M. Russo, “An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications,” Nanotechnology19(27), 275501 (2008).
[CrossRef] [PubMed]

Nat. Commun.

T. Schumacher, K. Kratzer, D. Molnar, M. Hecntschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun.2, 333 (2011).
[CrossRef]

K. Wang, E. Schonbrun, P. Steinvuzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef] [PubMed]

Nat. Photon.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon.5(6), 349–356 (2011).
[CrossRef]

Nature

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Opt. Commun.

M. A. Suarez, T. Grosjean, D. Charraut, and D. Courjon, “Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications,” Opt. Commun.270(2), 447–454 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Prog. Electromagnetics Res.

E. Vourch, P.-Y. Joubert, and L. Cima, “Analytical and numerical analyses of a current sensor using nonlinear effects in a flexible magnetic transducer,” Prog. Electromagnetics Res.99, 323–338 (2009).
[CrossRef]

Science

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006).
[CrossRef] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).

COMSOL 3.4, Comsol Multiphysics, http://www.comsol.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of the broken-nanoring, r1=100 nm, w1=30 nm, t0=60 nm, t1=40 nm and g=14 nm. The green arrows show the normal incident azimuthally polarized light.

Fig. 2
Fig. 2

Calculated normalized intensity spectra of the broken-nanoring for electric (red line) and magnetic (blue line) fields.

Fig. 3
Fig. 3

Calculated normalized near-field distributions of the broken-nanoring for electric fields at (a) mode 1, (b) mode 2, (c) 740 nm, and magnetic fields at (d) mode 1, (e) mode 2, (f) 740 nm in xy and xz planes, respectively. The cutting planes are all through the middle of the gap region.

Fig. 4
Fig. 4

Calculated normalized electric near-field distributions in logarithmic scale (a), (c) in xy plane and (b), (d) in yz plane at two resonant wavelengths, respectively.

Fig. 5
Fig. 5

Physical model for the resonance of (a) mode 1 and (b) mode 2. Numerical simulations of instantaneous (c) magnetic distributions at mode 1 and (d) electric distributions at mode 2. The cross-sections in (c) and (d) are indicated by the pink planes along the middle of the gap region of the broken-nanoring in (a) and (b). Blue and red arrows represent the orientations of magnetic and electric fields at instantaneous time, respectively.

Fig. 6
Fig. 6

Schematic illustration of the composite nanoring. The radius, thickness and width of the outside nanoring are denoted by r2, t2 and w2, respectively.

Fig. 7
Fig. 7

Normalized intensity spectra of both electric and magnetic fields for the composite nanoring (dotted line) and broken-nanoring (solid line) illuminated by azimuthally polarized light. Insets: normalized electric near-field distributions and the corresponding numerical value distributions in xy plane in logarithmic scale for the composite nanoring at two resonant modes.

Fig. 8
Fig. 8

Normalized intensity spectra of both electric and magnetic fields for the second composite nanoring (dotted line) and broken-nanoring (solid line) illuminated by azimuthally polarized light. Insets: normalized electric near-field distributions and the corresponding numerical value distribution in xy plane in logarithmic scale for the second composite nanoring at the mixed resonant mode.

Metrics