Abstract

With extremely low material absorption and exceptional surface smoothness, silica-based optical resonators can achieve extremely high cavity quality (Q) factors. However, the intrinsic material limitations of silica (e.g., lack of second order nonlinearity) may limit the potential applications of silica-based high Q resonators. Here we report some results in utilizing layer-by-layer self-assembly to functionalize silica microspheres with nonlinear and plasmonic nanomaterials while maintaining Q factors as high as 107. We compare experimentally measured Q factors with theoretical estimates, and find good agreement.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett.21(7), 453–455 (1996).
    [CrossRef] [PubMed]
  2. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Quantum Electron.12(1), 3–14 (2006).
    [CrossRef]
  3. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  4. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
    [CrossRef] [PubMed]
  5. H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express15(25), 17410–17423 (2007).
    [CrossRef] [PubMed]
  6. G. Kozyreff, J. L. Dominguez-Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photon. Rev.5(6), 737–749 (2011).
    [CrossRef]
  7. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15(25), 17172–17205 (2007).
    [CrossRef] [PubMed]
  8. J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, “PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express16(14), 10248–10253 (2008).
    [CrossRef] [PubMed]
  9. Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett.90(21), 211110 (2007).
    [CrossRef]
  10. S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-galley modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
    [CrossRef]
  11. Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett.100(16), 163905 (2008).
    [CrossRef] [PubMed]
  12. T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Quantum Electron.10(5), 1219–1228 (2004).
    [CrossRef]
  13. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  14. H. S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett.35(4), 459–461 (2010).
    [CrossRef] [PubMed]
  15. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
    [CrossRef]
  16. J. L. D. -Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nature Commun.2, 1–8 (2011).
  17. A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
    [CrossRef]
  18. A. Garg, R. M. Davis, C. Durak, J. R. Heflin, and H. W. Gibson, “Polar orientation of a pendant anionic chromophore in thick layer-by-layer self-assembled polymeric films,” J. Appl. Phys.104(5), 053116 (2008).
    [CrossRef]
  19. K. E. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low molecular weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed.41(17), 3236–3238 (2002).
    [CrossRef]
  20. J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
    [CrossRef] [PubMed]
  21. J. Yi, C.-Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Appl. Phys. Lett.100(15), 153107 (2012).
    [CrossRef] [PubMed]
  22. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett.23(4), 247–249 (1998).
    [CrossRef] [PubMed]
  23. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron.26(10), 977–986 (1994).
    [CrossRef]
  24. C. Daengngam, M. Hofmann, Z. Liu, A. Wang, J. R. Heflin, and Y. Xu, “Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers,” Opt. Express19(11), 10326–10335 (2011).
    [CrossRef] [PubMed]
  25. S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express18(1), 281–287 (2010).
    [CrossRef] [PubMed]
  26. J. D. Jackson, Classical electrodynamics, John Wiley & Sons, Inc., 1998.
  27. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett.28(4), 272–274 (2003).
    [CrossRef] [PubMed]
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1998).
  29. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B23(7), 1381–1389 (2006).
    [CrossRef]
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. Lett. B6, 4370–4379 (1972).
  31. L. He, S. K. Ozdemir, J. Zhu, F. Monifi, H. Yilmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New J. Phys.15(7), 073030 (2013).
    [CrossRef]

2013 (1)

L. He, S. K. Ozdemir, J. Zhu, F. Monifi, H. Yilmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New J. Phys.15(7), 073030 (2013).
[CrossRef]

2012 (1)

J. Yi, C.-Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Appl. Phys. Lett.100(15), 153107 (2012).
[CrossRef] [PubMed]

2011 (4)

G. Kozyreff, J. L. Dominguez-Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photon. Rev.5(6), 737–749 (2011).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

J. L. D. -Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nature Commun.2, 1–8 (2011).

C. Daengngam, M. Hofmann, Z. Liu, A. Wang, J. R. Heflin, and Y. Xu, “Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers,” Opt. Express19(11), 10326–10335 (2011).
[CrossRef] [PubMed]

2010 (4)

S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express18(1), 281–287 (2010).
[CrossRef] [PubMed]

H. S. Choi, X. Zhang, and A. M. Armani, “Hybrid silica-polymer ultra-high-Q microresonators,” Opt. Lett.35(4), 459–461 (2010).
[CrossRef] [PubMed]

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef] [PubMed]

2008 (4)

A. Garg, R. M. Davis, C. Durak, J. R. Heflin, and H. W. Gibson, “Polar orientation of a pendant anionic chromophore in thick layer-by-layer self-assembled polymeric films,” J. Appl. Phys.104(5), 053116 (2008).
[CrossRef]

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-galley modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett.100(16), 163905 (2008).
[CrossRef] [PubMed]

J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, “PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express16(14), 10248–10253 (2008).
[CrossRef] [PubMed]

2007 (4)

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15(25), 17172–17205 (2007).
[CrossRef] [PubMed]

H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express15(25), 17410–17423 (2007).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett.90(21), 211110 (2007).
[CrossRef]

2006 (3)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
[CrossRef] [PubMed]

I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B23(7), 1381–1389 (2006).
[CrossRef]

2004 (1)

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Quantum Electron.10(5), 1219–1228 (2004).
[CrossRef]

2003 (2)

2002 (1)

K. E. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low molecular weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed.41(17), 3236–3238 (2002).
[CrossRef]

1998 (1)

1996 (1)

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron.26(10), 977–986 (1994).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. Lett. B6, 4370–4379 (1972).

Armani, A. M.

Arnold, S.

Blackledge, C. W.

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-galley modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Boriskina, S. V.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Brands, C.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
[CrossRef] [PubMed]

K. E. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low molecular weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed.41(17), 3236–3238 (2002).
[CrossRef]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef] [PubMed]

Chiasera, A.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
[CrossRef]

Choi, H. S.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. Lett. B6, 4370–4379 (1972).

Conti, G. N.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
[CrossRef]

Daengngam, C.

Davis, R. M.

A. Garg, R. M. Davis, C. Durak, J. R. Heflin, and H. W. Gibson, “Polar orientation of a pendant anionic chromophore in thick layer-by-layer self-assembled polymeric films,” J. Appl. Phys.104(5), 053116 (2008).
[CrossRef]

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
[CrossRef] [PubMed]

K. E. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low molecular weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed.41(17), 3236–3238 (2002).
[CrossRef]

Demirel, M. C.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Dominguez-Juarez, J. L.

G. Kozyreff, J. L. Dominguez-Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photon. Rev.5(6), 737–749 (2011).
[CrossRef]

Dumeige, Y.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
[CrossRef]

Durak, C.

A. Garg, R. M. Davis, C. Durak, J. R. Heflin, and H. W. Gibson, “Polar orientation of a pendant anionic chromophore in thick layer-by-layer self-assembled polymeric films,” J. Appl. Phys.104(5), 053116 (2008).
[CrossRef]

Fan, X.

Feron, P.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
[CrossRef]

Ferrari, M.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
[CrossRef]

Garg, A.

A. Garg, R. M. Davis, C. Durak, J. R. Heflin, and H. W. Gibson, “Polar orientation of a pendant anionic chromophore in thick layer-by-layer self-assembled polymeric films,” J. Appl. Phys.104(5), 053116 (2008).
[CrossRef]

Gaskins, K. J.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
[CrossRef] [PubMed]

Gibson, H. W.

A. Garg, R. M. Davis, C. Durak, J. R. Heflin, and H. W. Gibson, “Polar orientation of a pendant anionic chromophore in thick layer-by-layer self-assembled polymeric films,” J. Appl. Phys.104(5), 053116 (2008).
[CrossRef]

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
[CrossRef] [PubMed]

K. E. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low molecular weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed.41(17), 3236–3238 (2002).
[CrossRef]

Gorodetsky, M. L.

Guzy, M.

K. E. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low molecular weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed.41(17), 3236–3238 (2002).
[CrossRef]

Guzy, M. T.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
[CrossRef] [PubMed]

Han, M.

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett.100(16), 163905 (2008).
[CrossRef] [PubMed]

He, L.

L. He, S. K. Ozdemir, J. Zhu, F. Monifi, H. Yilmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New J. Phys.15(7), 073030 (2013).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef] [PubMed]

Heflin, J. R.

C. Daengngam, M. Hofmann, Z. Liu, A. Wang, J. R. Heflin, and Y. Xu, “Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers,” Opt. Express19(11), 10326–10335 (2011).
[CrossRef] [PubMed]

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett.100(16), 163905 (2008).
[CrossRef] [PubMed]

A. Garg, R. M. Davis, C. Durak, J. R. Heflin, and H. W. Gibson, “Polar orientation of a pendant anionic chromophore in thick layer-by-layer self-assembled polymeric films,” J. Appl. Phys.104(5), 053116 (2008).
[CrossRef]

Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett.90(21), 211110 (2007).
[CrossRef]

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
[CrossRef] [PubMed]

K. E. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low molecular weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed.41(17), 3236–3238 (2002).
[CrossRef]

Hofmann, M.

Holler, S.

Howard, D. J.

Ilchenko, V. S.

Jao, C.-Y.

J. Yi, C.-Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Appl. Phys. Lett.100(15), 153107 (2012).
[CrossRef] [PubMed]

Jestin, Y.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. Lett. B6, 4370–4379 (1972).

-Juarez, J. L. D.

J. L. D. -Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nature Commun.2, 1–8 (2011).

Kandas, I. L. N.

J. Yi, C.-Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Appl. Phys. Lett.100(15), 153107 (2012).
[CrossRef] [PubMed]

Khoshsima, M.

Kimble, H. J.

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15(25), 17172–17205 (2007).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Quantum Electron.10(5), 1219–1228 (2004).
[CrossRef]

Kozyreff, G.

G. Kozyreff, J. L. Dominguez-Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photon. Rev.5(6), 737–749 (2011).
[CrossRef]

J. L. D. -Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nature Commun.2, 1–8 (2011).

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron.26(10), 977–986 (1994).
[CrossRef]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef] [PubMed]

Libchaber, A.

Liu, B.

J. Yi, C.-Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Appl. Phys. Lett.100(15), 153107 (2012).
[CrossRef] [PubMed]

Liu, Z.

C. Daengngam, M. Hofmann, Z. Liu, A. Wang, J. R. Heflin, and Y. Xu, “Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers,” Opt. Express19(11), 10326–10335 (2011).
[CrossRef] [PubMed]

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett.100(16), 163905 (2008).
[CrossRef] [PubMed]

Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett.90(21), 211110 (2007).
[CrossRef]

Mabuchi, H.

Martorell, J.

J. L. D. -Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nature Commun.2, 1–8 (2011).

G. Kozyreff, J. L. Dominguez-Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photon. Rev.5(6), 737–749 (2011).
[CrossRef]

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

Min, B.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Quantum Electron.10(5), 1219–1228 (2004).
[CrossRef]

Monifi, F.

L. He, S. K. Ozdemir, J. Zhu, F. Monifi, H. Yilmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New J. Phys.15(7), 073030 (2013).
[CrossRef]

Neyman, P.

K. E. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low molecular weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed.41(17), 3236–3238 (2002).
[CrossRef]

Neyman, P. J.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
[CrossRef] [PubMed]

Ozdemir, S. K.

L. He, S. K. Ozdemir, J. Zhu, F. Monifi, H. Yilmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New J. Phys.15(7), 073030 (2013).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef] [PubMed]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron.26(10), 977–986 (1994).
[CrossRef]

Pelli, S.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
[CrossRef]

Ren, H. C.

Righini, G. C.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
[CrossRef]

Robinson, H. D.

J. Yi, C.-Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Appl. Phys. Lett.100(15), 153107 (2012).
[CrossRef] [PubMed]

Rosenberger, A. T.

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-galley modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Savchenkov, A. A.

Shopova, S. I.

S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express18(1), 281–287 (2010).
[CrossRef] [PubMed]

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-galley modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Soria, S.

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
[CrossRef]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Quantum Electron.10(5), 1219–1228 (2004).
[CrossRef]

Streed, E. W.

Sun, Y.

Suter, J. D.

Teraoka, I.

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15(25), 17172–17205 (2007).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Quantum Electron.10(5), 1219–1228 (2004).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Van Cott, K. E.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
[CrossRef] [PubMed]

K. E. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low molecular weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed.41(17), 3236–3238 (2002).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Vernooy, D. W.

Viator, J. A.

Vollmer, F.

Wang, A.

C. Daengngam, M. Hofmann, Z. Liu, A. Wang, J. R. Heflin, and Y. Xu, “Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers,” Opt. Express19(11), 10326–10335 (2011).
[CrossRef] [PubMed]

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett.100(16), 163905 (2008).
[CrossRef] [PubMed]

Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett.90(21), 211110 (2007).
[CrossRef]

Wang, Z.

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef] [PubMed]

Xu, Y.

J. Yi, C.-Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Appl. Phys. Lett.100(15), 153107 (2012).
[CrossRef] [PubMed]

C. Daengngam, M. Hofmann, Z. Liu, A. Wang, J. R. Heflin, and Y. Xu, “Demonstration of a cylindrically symmetric second-order nonlinear fiber with self-assembled organic surface layers,” Opt. Express19(11), 10326–10335 (2011).
[CrossRef] [PubMed]

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett.100(16), 163905 (2008).
[CrossRef] [PubMed]

Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett.90(21), 211110 (2007).
[CrossRef]

Yang, L.

L. He, S. K. Ozdemir, J. Zhu, F. Monifi, H. Yilmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New J. Phys.15(7), 073030 (2013).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef] [PubMed]

Yi, J.

J. Yi, C.-Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Appl. Phys. Lett.100(15), 153107 (2012).
[CrossRef] [PubMed]

Yilmaz, H.

L. He, S. K. Ozdemir, J. Zhu, F. Monifi, H. Yilmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New J. Phys.15(7), 073030 (2013).
[CrossRef]

Zhang, X.

Zhu, J.

L. He, S. K. Ozdemir, J. Zhu, F. Monifi, H. Yilmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New J. Phys.15(7), 073030 (2013).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. (1)

K. E. Van Cott, M. Guzy, P. Neyman, C. Brands, J. R. Heflin, H. W. Gibson, and R. M. Davis, “Layer-by-layer deposition and ordering of low molecular weight dye molecules for second order nonlinear optics,” Angew. Chem. Int. Ed.41(17), 3236–3238 (2002).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Phys. B (1)

S. I. Shopova, C. W. Blackledge, and A. T. Rosenberger, “Enhanced evanescent coupling to whispering-galley modes due to gold nanorods grown on the microresonator surface,” Appl. Phys. B93(1), 183–187 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011).
[CrossRef]

Y. Xu, A. Wang, J. R. Heflin, and Z. Liu, “Proposal and analysis of a silica fiber with large and thermodynamically stable second order nonlinearity,” Appl. Phys. Lett.90(21), 211110 (2007).
[CrossRef]

J. Yi, C.-Y. Jao, I. L. N. Kandas, B. Liu, Y. Xu, and H. D. Robinson, “Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres,” Appl. Phys. Lett.100(15), 153107 (2012).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Quantum Electron.10(5), 1219–1228 (2004).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Quantum Electron.12(1), 3–14 (2006).
[CrossRef]

J. Appl. Phys. (1)

A. Garg, R. M. Davis, C. Durak, J. R. Heflin, and H. W. Gibson, “Polar orientation of a pendant anionic chromophore in thick layer-by-layer self-assembled polymeric films,” J. Appl. Phys.104(5), 053116 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Langmuir (1)

J. R. Heflin, M. T. Guzy, P. J. Neyman, K. J. Gaskins, C. Brands, Z. Wang, H. W. Gibson, R. M. Davis, and K. E. Van Cott, “Efficient, thermally stable, second order nonlinear optical response in organic hybrid covalent/ionic self-assembled films,” Langmuir22(13), 5723–5727 (2006).
[CrossRef] [PubMed]

Laser Photon. Rev. (1)

G. Kozyreff, J. L. Dominguez-Juarez, and J. Martorell, “Nonlinear optics in spheres: from second harmonic scattering to quasi-phase matched generation in whispering gallery modes,” Laser Photon. Rev.5(6), 737–749 (2011).
[CrossRef]

Laser Photonics Rev. (1)

A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photonics Rev.4(3), 457–482 (2010).
[CrossRef]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef] [PubMed]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Nature Commun. (1)

J. L. D. -Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nature Commun.2, 1–8 (2011).

New J. Phys. (1)

L. He, S. K. Ozdemir, J. Zhu, F. Monifi, H. Yilmaz, and L. Yang, “Statistics of multiple-scatterer-induced frequency splitting in whispering gallery microresonators and microlasers,” New J. Phys.15(7), 073030 (2013).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron.26(10), 977–986 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Xu, M. Han, A. Wang, Z. Liu, and J. R. Heflin, “Second order parametric processes in nonlinear silica microspheres,” Phys. Rev. Lett.100(16), 163905 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. Lett. B6, 4370–4379 (1972).

Other (2)

J. D. Jackson, Classical electrodynamics, John Wiley & Sons, Inc., 1998.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM images of a microsphere coated with (a) 20 bilayers of PAH/PB. (b) Au NPs deposited for 20 minutes.

Fig. 2
Fig. 2

(a) The experimental system for measuring the Q factors of functionalized silica microspheres. (b) Transmission spectrum of a silica microsphere coated with a monolayer of PAH.

Fig. 3
Fig. 3

(a) The surface profile of a functional microsphere coated with 20 bilayers of PAH/PCBS. The data was obtained using AFM. (b) The correlation of the surface profile of a microsphere coated with 5 bilayers of PAH/PCBS. Both experimental data (thin blue line) and theoretical fitting (thick red line) are shown.

Fig. 4
Fig. 4

(a) Total Q factors of the functional microsphere versus the self-assembled polymer layer thickness (t). The experimental data are shown as triangles (for PAH/PB) and dots (for PAH/PCBS). The theoretical fittings are performed using 1/Q = 1/Qcoupling + A ´ tα, where Qcoupling, A, and α are fitting constants. (b) The relationship between film thickness t and Qfilm. The fitted values are given by1/Qfilm = A ´ tα. The experimental data are obtained using 1/Qfilm = 1/Q - 1/Qcoupling..

Fig. 5
Fig. 5

(a) The radial dependence of a TE and a TM WGM. In our calculations, the radius of the microsphere is 125 μm . The two angular modal numbers are l=m=715 For the TM mode, and l=m=716 For the TE mode. (b) The theoretically predicted and the experimentally measured cavity Q factors at different NP density levels. The theoretical results are calculated using Eqs. (11) and (12), and parameters given in the text.

Tables (1)

Tables Icon

Table 1 The rms surface roughnessσ, correlation length B, and surface-scattering-induced Q factor (Qss) for three functional microspheres with different numbers of PAH/PCBS bilayer coatings.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Q= λ R Δλ
1 Q 1 Q silica + 1 Q film + 1 Q ss + 1 Q coupling
Q ss = 3ε (ε+2) 2 ( λ R ) 7/2 D 1/2 4 π 3 (ε1) 5/2 σ 2 B 2
Q NP =ω W P NPs
W= 1 2 ε o ε r | E WGM (r,θ,ϕ) | 2 dV
W= 1 2 k o 2 ε o ε r [S(r)] 2 dr | X lm (θ,ϕ) | 2 sinθdθdϕ
p NP = | E WGM ( R i , θ i , ϕ i ) | 2 2 η o σ ex.
P NPs = N p σ ex. 2 η o | E WGM ( R i , θ i , ϕ i ) | 2 dA
P NPs = N p σ ex. 2 η o k o 2 [S(R)] 2 | X lm (θ,ϕ) | 2 sinθdθdϕ
σ ex. =4π a 2 xIm{ m 2 1 m 2 +2 [ 1+ x 2 15 ( m 2 1 m 2 +2 ) m 4 +27 m 2 +38 2 m 2 +3 ] }+ 8 3 x 4 Re{ ( m 2 1 m 2 +2 ) 2 }
Q NP = ω ε o η o ( ε r 1)R 2 N p σ ex.
1 Q 1 Q NP + 1 Q coupling

Metrics