Abstract

As recently revealed, chirped dissipative solitons (DSs) generated in a long cavity fiber laser are subject to action of stimulated Raman scattering (SRS). Here we present theoretical and experimental study of the DS formation and evolution in the presence of strong SRS. The results demonstrate that the rising noisy Raman pulse (RP) acts not only as an additional channel of the energy dissipation destroying DS, but on the contrary can support it that results in formation of a complex of the bound DS and RP of comparable energy and duration. In the complex, the DS affords amplification of the RP, whereas the RP stabilizes the DS via temporal-spectral filtering. Stable 25 nJ SRS-driven chirped DS pulses are generated in all-fiber ring laser cavities with lengths of up to 120 m. The DS with duration up to 70 ps can be externally dechirped to <300 fs thus demonstrating the record compression factor.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A49(4), 2806–2811 (1994).
    [CrossRef] [PubMed]
  2. B. S. Kerner and V. V. Osipov, Autosolitons: A New Approach to Problems of Self-Organization and Turbulence (Kuwer Academic Publishers, 1994).
  3. N. Akhmediev and A. Ankiewicz, Dissipative Solitons (Springer, 2005).
  4. N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine (Springer, 2008).
  5. Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
    [CrossRef]
  6. W. H. Renninger and F. W. Wise, “Dissipative soliton fiber laser,” in Fiber Lasers, O. G. Okhotnikov, ed. (Wiley, 2012), pp. 97–134.
  7. S. K. Turitsyn, B. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep.521(4), 135–203 (2012).
    [CrossRef]
  8. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
    [CrossRef]
  9. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett.29(12), 1366–1368 (2004).
    [CrossRef] [PubMed]
  10. D. Mortag, D. Wandt, U. Morgner, D. Kracht, and J. Neumann, “Sub-80-fs pulses from an all-fiber-integrated dissipative-soliton laser at 1 µm,” Opt. Express19(2), 546–551 (2011).
    [CrossRef] [PubMed]
  11. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14(21), 10095–10100 (2006).
    [CrossRef] [PubMed]
  12. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett.32(16), 2408–2410 (2007).
    [CrossRef] [PubMed]
  13. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett.34(5), 593–595 (2009).
    [CrossRef] [PubMed]
  14. S. Lefrançois, K. Kieu, Y. Deng, J. D. Kafka, and F. W. Wise, “Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber,” Opt. Lett.35(10), 1569–1571 (2010).
    [CrossRef] [PubMed]
  15. M. Baumgartl, C. Lecaplain, A. Hideur, J. Limpert, and A. Tünnermann, “66 W average power from a microjoule-class sub-100 fs fiber oscillator,” Opt. Lett.37(10), 1640–1642 (2012).
    [CrossRef] [PubMed]
  16. C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “Self-starting self-similar all-polarization maintaining Yb-doped fiber laser,” Opt. Express13(23), 9346–9351 (2005).
    [CrossRef] [PubMed]
  17. D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator,” Opt. Lett.37(19), 4104–4106 (2012).
    [CrossRef] [PubMed]
  18. M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express20(20), 22669–22674 (2012).
    [CrossRef] [PubMed]
  19. C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, “Raman-driven destabilization of giant-chirp oscillators: fundamental limitations to energy scalability,” in Conference on Lasers and Electro-Optics - Europe 2013, OSA Technical Digest (online) (Optical Society of America, 2012), paper CJ-9.
  20. D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation,” J. Opt. Soc. Am. B28(10), 2314–2319 (2011).
    [CrossRef]
  21. D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett.9, 662–668 (2012).
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  23. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B19(12), 2886–2892 (2002).
    [CrossRef]
  24. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A71(5), 053809 (2005).
    [CrossRef]
  25. R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).
  26. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B83(4), 503–510 (2006).
    [CrossRef]
  27. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A78(2), 023830 (2008).
    [CrossRef]

2012

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

S. K. Turitsyn, B. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep.521(4), 135–203 (2012).
[CrossRef]

M. Baumgartl, C. Lecaplain, A. Hideur, J. Limpert, and A. Tünnermann, “66 W average power from a microjoule-class sub-100 fs fiber oscillator,” Opt. Lett.37(10), 1640–1642 (2012).
[CrossRef] [PubMed]

D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly chirped dissipative soliton oscillator,” Opt. Lett.37(19), 4104–4106 (2012).
[CrossRef] [PubMed]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express20(20), 22669–22674 (2012).
[CrossRef] [PubMed]

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett.9, 662–668 (2012).

2011

2010

2009

2008

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A78(2), 023830 (2008).
[CrossRef]

2007

2006

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14(21), 10095–10100 (2006).
[CrossRef] [PubMed]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B83(4), 503–510 (2006).
[CrossRef]

2005

2004

2002

2000

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

1994

E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A49(4), 2806–2811 (1994).
[CrossRef] [PubMed]

Aguergaray, C.

Akhmediev, N.

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A78(2), 023830 (2008).
[CrossRef]

Anderson, D.

E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A49(4), 2806–2811 (1994).
[CrossRef] [PubMed]

Ankiewicz, A.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A78(2), 023830 (2008).
[CrossRef]

Apolonski, A.

Apolonski, A. A.

Babin, S. A.

Bale, B.

S. K. Turitsyn, B. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep.521(4), 135–203 (2012).
[CrossRef]

Baumgartl, M.

Broderick, N. G. R.

Buckley, J.

Cantrell, C. D.

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A78(2), 023830 (2008).
[CrossRef]

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B83(4), 503–510 (2006).
[CrossRef]

Chong, A.

Deng, Y.

Erkintalo, M.

Fedoruk, M. P.

S. K. Turitsyn, B. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep.521(4), 135–203 (2012).
[CrossRef]

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett.9, 662–668 (2012).

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation,” J. Opt. Soc. Am. B28(10), 2314–2319 (2011).
[CrossRef]

Fernandez, A.

Fuji, T.

Fürbach, A.

Grelu, Ph.

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

Hideur, A.

Hohmuth, R.

Hollenbeck, D.

Kafka, J. D.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B83(4), 503–510 (2006).
[CrossRef]

Kharenko, D. S.

Kieu, K.

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A71(5), 053809 (2005).
[CrossRef]

Korytin, A. I.

E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A49(4), 2806–2811 (1994).
[CrossRef] [PubMed]

Kracht, D.

Krausz, F.

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A71(5), 053809 (2005).
[CrossRef]

Lecaplain, C.

Lefrançois, S.

Limpert, J.

Lisak, M.

E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A49(4), 2806–2811 (1994).
[CrossRef] [PubMed]

Morgner, U.

Mortag, D.

Neumann, J.

Nielsen, C. K.

Ortaç, B.

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B83(4), 503–510 (2006).
[CrossRef]

Podivilov, E. V.

Poppe, A.

Renninger, W.

Renninger, W. H.

Richter, W.

Runge, A.

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A71(5), 053809 (2005).
[CrossRef]

Schreiber, T.

Sergeev, A. M.

E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A49(4), 2806–2811 (1994).
[CrossRef] [PubMed]

Shtyrina, O. V.

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett.9, 662–668 (2012).

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation,” J. Opt. Soc. Am. B28(10), 2314–2319 (2011).
[CrossRef]

Soto-Crespo, J. M.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A78(2), 023830 (2008).
[CrossRef]

Tünnermann, A.

Turitsyn, S. K.

S. K. Turitsyn, B. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep.521(4), 135–203 (2012).
[CrossRef]

Vanin, E. V.

E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A49(4), 2806–2811 (1994).
[CrossRef] [PubMed]

Vázquez, L.

E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A49(4), 2806–2811 (1994).
[CrossRef] [PubMed]

Wandt, D.

Wise, F.

Wise, F. W.

Yarutkina, I. A.

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett.9, 662–668 (2012).

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic-quintic Ginzburg-Landau equation,” J. Opt. Soc. Am. B28(10), 2314–2319 (2011).
[CrossRef]

Appl. Phys. B

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B83(4), 503–510 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Generation and scaling of highly-chirped dissipative solitons in an Yb-doped fiber laser,” Laser Phys. Lett.9, 662–668 (2012).

Nat. Photonics

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

S. K. Turitsyn, B. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep.521(4), 135–203 (2012).
[CrossRef]

Phys. Rev. A

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A78(2), 023830 (2008).
[CrossRef]

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A71(5), 053809 (2005).
[CrossRef]

E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A49(4), 2806–2811 (1994).
[CrossRef] [PubMed]

Other

B. S. Kerner and V. V. Osipov, Autosolitons: A New Approach to Problems of Self-Organization and Turbulence (Kuwer Academic Publishers, 1994).

N. Akhmediev and A. Ankiewicz, Dissipative Solitons (Springer, 2005).

N. Akhmediev and A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine (Springer, 2008).

W. H. Renninger and F. W. Wise, “Dissipative soliton fiber laser,” in Fiber Lasers, O. G. Okhotnikov, ed. (Wiley, 2012), pp. 97–134.

C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, “Raman-driven destabilization of giant-chirp oscillators: fundamental limitations to energy scalability,” in Conference on Lasers and Electro-Optics - Europe 2013, OSA Technical Digest (online) (Optical Society of America, 2012), paper CJ-9.

R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2002).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Left) Schematic of the experimental setup. (Right) The calculated shapes of the generated pulses in corresponding points (A,B,C,D) of the scheme.

Fig. 2
Fig. 2

Measured transmission of WDM (left scale) and approximated fiber dispersion (right scale).

Fig. 3
Fig. 3

Evolution of the pulse shape (a) and spectrum (b) along PMF of L = 30 m in the scheme of Fig. 1.

Fig. 4
Fig. 4

Calculated and measured pulse shapes (a) and spectra (b) at the output port D in a scheme of Fig. 1.

Fig. 5
Fig. 5

(a) Calculated and measured ACF and CCF traces; (b) The FROG trace.

Fig. 6
Fig. 6

(a) Experimental ACF traces at different cavity lengths (30-120 m) for the DS and the RP (inset) with external compression from the broad to the narrow contour marked by arrows; (b) Energy of the DS in the experiment (green triangles) and simulation (green squares connected by the solid line). The calculated total energy of the DS and RP (dashed line). The experimental point obtained for L = 120 m (E≈20 nJ) is not added because the pump power was reduced due to lower stability at this length.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A z =i β 2 2 2 A t 2 + β 3 6 3 A t 3 +iγ( A(z,t) 0 R( t ) | A(z,t t ) | 2 d t )
g(E)= g 0 1+E/ E sat ,
ρ= ρ max ( P P cr 1 ) 2 ( ρ max ρ min ),

Metrics