Abstract

We present the analysis of diffusion-controlled annihilation of excited U(VI) complexes in aqueous media that leads to appearance of rapid non-exponential fluorescence decay. We show that under typical experimental conditions the impact of annihilation processes can’t be neglected when determining U(VI) complexes fluorescence lifetimes: at excitation intensities between 106 W/cm2 and 108 W/cm2, the rate of excited states deactivation increases, and then an opposite trend is observed. The latter can be interpreted as the consequence of optical breakdown in water.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Meinrath, P. Schneider, and G. Meinrath, “Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany,” J. Env. Radioact.64, 175–193 (2003).
    [CrossRef]
  2. J. Fuger, “Thermodynamic properties of actinides aqueous species relevant to geochemical problems,” Radiochim. Acta58/59, 81–91 (1992).
  3. P. C. Burns, R. C. Ewing, and A. Navrotsky, “Nuclear fuel after a reactor accident,” Science335, 1184–1188 (2012).
    [CrossRef] [PubMed]
  4. L. Johnson, C. Ferry, Ch. Poinssot, and P. Lovera, “Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal,” J. Nucl. Mater.346, 56–65 (2005).
    [CrossRef]
  5. D. W. Shoesmith, “Fuel corrosion processes under waste disposal conditions,” J. Nucl. Mater.282, 1–31 (2000).
    [CrossRef]
  6. I. Grenthe, Chemical Thermodynamics of Uranium, (Universal, 1992).
  7. R. Guillaumont, T. Fanghänel, J. Fuger, J. Grenthe, V. Neck, D. Palmer, and M. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, (Elsevier Science Publishers B.V., 2003).
  8. H. Zanker, W. Richter, V. Brendler, and H. Nitsche, “Colloid-borne uranium anf other heavy metals in the water of mine drainage gallery,” Radiochim. Acta88, 619–624 (2000).
    [CrossRef]
  9. C. May, P. Worsfold, and M. Keith-Roach, “Analytical techniques for speciation analysis of aqueous long-lived radionuclides in environmental matrices,” Trends Anal. Chem.27, 160–168 (2008).
    [CrossRef]
  10. Z. Szabo, T. Toraishi, V. Vallet, and I. Grenthe, “Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms,” Coord. Chem. Rev.250, 784–815 (2006).
    [CrossRef]
  11. S. Tsushima, S. Nagasaki, S. Tanaka, and A. Suzuki, “A raman spectroscopic study of uranyl species adsorbed onto colloidal particles,” J. Phys. Chem. B102, 9029–9032 (1998).
    [CrossRef]
  12. S. Nguyen, R. Silva, H. Weed, and J. Andrews, “Standard gibbs free-energies of formation at the temperature 303.15-k of 4 uranyl silicates - soddyite, uranophane, sodium boltwoodite, and sodium weeksite,” J. Chem. Therm.24, 359–376 (1992).
    [CrossRef]
  13. G. Geipel, “Some aspects of actinide speciation by laser-induced spectroscopy,” Coord. Chem. Rev.250, 844–854 (2006).
    [CrossRef]
  14. T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk, and S. Weiss, “Identification of the uranium speciation in an underground acid mine drainage environment,” Geochim. Cosmochim. Acta75, 2200–2212 (2011).
    [CrossRef]
  15. R. N. Collins, T. Saito, N. Aoyagi, T. E. Payne, T. Kimura, and T. D. Waite, “Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides,” J. Env. Qual.40, 731–741 (2011).
    [CrossRef]
  16. S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003).
    [CrossRef]
  17. M. Moriyasu, Y. Yokoyama, and S. Ikeda, “Anion coordination to uranyl ion and the luminescence lifetime of the uranyl complex,” J. Inorg. Nucl. Chem.39, 2199–2203 (1977).
    [CrossRef]
  18. Z. Fazekas, T. Yamamura, and H. Tomiyasu, “Deactivation and luminescence lifetimes of excited uranyl ion and its fluoro complexes,” J. All. Comp.271, 756–759 (1998).
    [CrossRef]
  19. J. Beitz and C. Williams, “Uranyl fluoride luminescence in acidic aqueous solutions,” J. All. Comp.250, 375–379 (1997).
    [CrossRef]
  20. I. Billard, E. Ansoborlo, K. Apperson, S. Arpigny, M. Azenha, D. Birch, P. Bros, H. Burrows, G. Choppin, L. Couston, V. Dubois, T. Fanghanel, G. Geipel, S. Hubert, J. Kim, T. Kimura, R. Klenze, A. Kronenberg, M. Kumke, G. Lagarde, G. Lamarque, S. Lis, C. Madic, G. Meinrath, C. Moulin, R. Nagaishi, D. Parker, G. Plancque, F. Scherbaum, E. Simoni, S. Sinkov, and C. Viallesoubranne, “Aqueous solutions of uranium(VI) as studied by time-resolved emission spectroscopy: A round-robin test,” Appl. Spectrosc.57, 1027–1038 (2003).
    [CrossRef] [PubMed]
  21. G. Geipel, A. Brachmann, V. Brendler, G. Bernhard, and H. Nitsche, “Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS),” Radiochim. Acta75, 199–204 (1996).
  22. T. Vercouter, P. Vitorge, B. Amekraz, and C. Moulin, “Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(VI),” Inorg. Chem.47, 2180–2189 (2008).
    [CrossRef] [PubMed]
  23. I. Billard and K. Lutzenkirchen, “Equilibrium constants in aqueous lanthanide and actinide chemistry from time-resolved fluorescence spectroscopy: The role of ground and excited state reactions,” Radiochim. Acta91, 285–294 (2003).
    [CrossRef]
  24. H. Sternlicht, G. Robinson, and G. Nieman, “Triplet-triplet annihilation and delayed fluorescence in molecular aggregates,” J. Chem. Phys.38, 1326–1335 (1963).
    [CrossRef]
  25. R. G. Denning, “Electronic structure and bonding in actinyl ions and their analogs,” J. Phys. Chem. A111, 4125–4143 (2007).
    [CrossRef] [PubMed]
  26. R. Ghosh, J. A. Mondal, H. N. Ghosh, and D. K. Palit, “Ultrafast Dynamics of the Excited States of the Uranyl Ion in Solutions,” J. Phys. Chem. A114, 5263–5270 (2010).
    [CrossRef] [PubMed]
  27. M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. G. M. Miguel, A. P. Daramanyan, and I. V. Khudyakov, “On the uranyl ion luminescence in aqueous solutions,” J. Lumin.48–49, 522–526 (1991).
    [CrossRef]
  28. T. J. Barker, R. G. Denning, and J. R. G. Thorne, “Applications of Two-Photon Spectroscopy to Inorganic Compounds. 1. Spectrum and Electronic Structure of Cs2UO2Cl4,” Inorg. Chem.26, 1721–1732 (1987)
    [CrossRef]
  29. G. H. Dieke and A. B. F. Duncan, Spectroscopic properties of uranium compounds (McGraw-Hill Book Co, 1949).
  30. Y. Yokoyama, M. Moriyasu, and S. Ikeda, “Electron transfer mechanism in quenching of uranyl luminescence by halide ions,” J. Inorg. Nucl. Chem., 38, 1329–1333 (1979).
    [CrossRef]
  31. Y. Park, Y. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, and H. Tomiyasuk, “Deactivation Mechanism of Excited Uranium(VI) Complexes in Aqueous Solutions,” J. Chem. Soc. Faraday Trans.86, 55–60 (1990).
    [CrossRef]
  32. S. V. Lotnik, L. A. Khamidullina, and V. P. Kazakov, “Influence of temperature on the lifetime of electronically excited uranyl ion: I. Liquid and supercooled H2SO4 solutions” Radiochem.45, 550–554 (2003)
    [CrossRef]
  33. P. Wahlin, V. Vallet, U. Wahlgren, and I. Grenthe, “Water Exchange Mechanism in the First Excited State of Hydrated Uranyl(VI)” Inorg. Chem.48, 11310–11313 (2009).
    [CrossRef] [PubMed]
  34. R. Hill, T. Kemp, D. Allen, and A. Cox, “Absorption-spectrum, lifetime and photoreactivity towards alcohols of excited-state of aqueous uranyl-ion (UO2+/2),” J. Chem. Soc. Faraday Trans. I70, 847–857 (1974).
    [CrossRef]
  35. A. Bakac and H. Burrows, “Uranyl ion: A convenient standard for transient molar absorption coefficient measurements,” Appl. Spectrosc.51, 1916–1917 (1997).
    [CrossRef]
  36. T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys.2, 55–75 (1948).
    [CrossRef]
  37. D. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21, 836–850 (1953).
    [CrossRef]
  38. A. Monguzzi, R. Tubino, and F. Meinardi, “Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer,” Phys. Rev. B77, 196112 (2008).
  39. M. Marcantonatos, “Mechanism of quenching of uranyl-ion luminescence by metal-ions,” Inorg. Chim. Acta24, 53–55 (1977).
    [CrossRef]
  40. H. Burrows, A. Cardoso, S. Formosinho, and M. Miguel, “Photophysics of the excited uranyl-ion in aqueous-solutions .4. Quenching by metal-ions,” J. Chem. Soc. Faraday Trans. I81, 49–60 (1985).
    [CrossRef]
  41. G. Marx and H. Bischoff, “Transport processes of actinides in electrolyte-solutions. 1. Determination of ionic mobilities of uranium in aqueous-solutions at 25° by radioisotope method,” J. Radioan. Chem.30, 567–581 (1976).
    [CrossRef]
  42. S. Kerisit and C. Liu, “Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution,” Geochim. Cosmochim. Acta74, 4937–4952 (2010).
    [CrossRef]
  43. A. Einstein, “The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat,” Ann. Phys.17, 549–560 (1905).
    [CrossRef]
  44. M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen,” Zeitschr. Phys. Chem.92, 129–168 (1917).
  45. S. I. Wawilow, “The lifetime of the excited molecules in the fluorescent aqueous solutions,” Zeitschr. Phys.53, 665–674 (1929).
    [CrossRef]
  46. S. McGlynn and J. Smith, “Electronic structure, spectra, and magnetic properties of actinyl ions. 1. Uranyl ion,” J. Mol. Sp.6, 164–187 (1961).
    [CrossRef]
  47. J. Bell and R. Biggers, “Absorption spectrum of uranyl ion in perchlorate media. I. Mathematical resolution of overlapping band structure and studies of environmental effects,” J. Mol. Spectrosc.18, 247–275 (1965).
    [CrossRef]
  48. A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A Nanosecond Laser Fluorimeter,” Phys. Instrum. Ecolog. Med. Biolog.49, 430–434 (2006).
  49. E. Jones, Tr. Oliphant, and P. Peterson, and others, “SciPy: Open source scientific tools for Python” (2001), http://www.scipy.org/ .
  50. I. Puigdomenech, “Chemical Equilibrium Diagrams”, https://sites.google.com/site/chemdiagr/
  51. A. Kirishima, T. Kimura, O. Tochiyama, and Z. Yoshida, “Speciation study on complex formation of uranium(VI) with phosphate and uoride at high temperatures and pressures by time-resolved laser-induced uorescence spectroscopy,” Radiochim. Acta92, 889–896 (2004).
    [CrossRef]
  52. D. Nikogosyan, A. Oraevsky, and V. Rupasov, “2-photon ionization and dissociation of liquid water by powerful laser uv-radiation,” Chem. Phys.77, 131–143 (1983).
    [CrossRef]
  53. A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. 1. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron.2, 847–860 (1996).
    [CrossRef]
  54. S. Kudryashov and V. Zvorykin, “Microscale nanosecond laser-induced optical breakdown in water,” Phys. Rev. E78, 036404 (2008).
    [CrossRef]
  55. A. B. Yusov and V. P. Shilov, “Photochemistry of f-elements ions,” Russ. Chem. Bull.49, 1925–1953 (2000).
    [CrossRef]

2012 (1)

P. C. Burns, R. C. Ewing, and A. Navrotsky, “Nuclear fuel after a reactor accident,” Science335, 1184–1188 (2012).
[CrossRef] [PubMed]

2011 (2)

T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk, and S. Weiss, “Identification of the uranium speciation in an underground acid mine drainage environment,” Geochim. Cosmochim. Acta75, 2200–2212 (2011).
[CrossRef]

R. N. Collins, T. Saito, N. Aoyagi, T. E. Payne, T. Kimura, and T. D. Waite, “Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides,” J. Env. Qual.40, 731–741 (2011).
[CrossRef]

2010 (2)

R. Ghosh, J. A. Mondal, H. N. Ghosh, and D. K. Palit, “Ultrafast Dynamics of the Excited States of the Uranyl Ion in Solutions,” J. Phys. Chem. A114, 5263–5270 (2010).
[CrossRef] [PubMed]

S. Kerisit and C. Liu, “Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution,” Geochim. Cosmochim. Acta74, 4937–4952 (2010).
[CrossRef]

2009 (1)

P. Wahlin, V. Vallet, U. Wahlgren, and I. Grenthe, “Water Exchange Mechanism in the First Excited State of Hydrated Uranyl(VI)” Inorg. Chem.48, 11310–11313 (2009).
[CrossRef] [PubMed]

2008 (4)

T. Vercouter, P. Vitorge, B. Amekraz, and C. Moulin, “Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(VI),” Inorg. Chem.47, 2180–2189 (2008).
[CrossRef] [PubMed]

C. May, P. Worsfold, and M. Keith-Roach, “Analytical techniques for speciation analysis of aqueous long-lived radionuclides in environmental matrices,” Trends Anal. Chem.27, 160–168 (2008).
[CrossRef]

A. Monguzzi, R. Tubino, and F. Meinardi, “Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer,” Phys. Rev. B77, 196112 (2008).

S. Kudryashov and V. Zvorykin, “Microscale nanosecond laser-induced optical breakdown in water,” Phys. Rev. E78, 036404 (2008).
[CrossRef]

2007 (1)

R. G. Denning, “Electronic structure and bonding in actinyl ions and their analogs,” J. Phys. Chem. A111, 4125–4143 (2007).
[CrossRef] [PubMed]

2006 (3)

G. Geipel, “Some aspects of actinide speciation by laser-induced spectroscopy,” Coord. Chem. Rev.250, 844–854 (2006).
[CrossRef]

Z. Szabo, T. Toraishi, V. Vallet, and I. Grenthe, “Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms,” Coord. Chem. Rev.250, 784–815 (2006).
[CrossRef]

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A Nanosecond Laser Fluorimeter,” Phys. Instrum. Ecolog. Med. Biolog.49, 430–434 (2006).

2005 (1)

L. Johnson, C. Ferry, Ch. Poinssot, and P. Lovera, “Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal,” J. Nucl. Mater.346, 56–65 (2005).
[CrossRef]

2004 (1)

A. Kirishima, T. Kimura, O. Tochiyama, and Z. Yoshida, “Speciation study on complex formation of uranium(VI) with phosphate and uoride at high temperatures and pressures by time-resolved laser-induced uorescence spectroscopy,” Radiochim. Acta92, 889–896 (2004).
[CrossRef]

2003 (5)

S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003).
[CrossRef]

A. Meinrath, P. Schneider, and G. Meinrath, “Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany,” J. Env. Radioact.64, 175–193 (2003).
[CrossRef]

S. V. Lotnik, L. A. Khamidullina, and V. P. Kazakov, “Influence of temperature on the lifetime of electronically excited uranyl ion: I. Liquid and supercooled H2SO4 solutions” Radiochem.45, 550–554 (2003)
[CrossRef]

I. Billard and K. Lutzenkirchen, “Equilibrium constants in aqueous lanthanide and actinide chemistry from time-resolved fluorescence spectroscopy: The role of ground and excited state reactions,” Radiochim. Acta91, 285–294 (2003).
[CrossRef]

I. Billard, E. Ansoborlo, K. Apperson, S. Arpigny, M. Azenha, D. Birch, P. Bros, H. Burrows, G. Choppin, L. Couston, V. Dubois, T. Fanghanel, G. Geipel, S. Hubert, J. Kim, T. Kimura, R. Klenze, A. Kronenberg, M. Kumke, G. Lagarde, G. Lamarque, S. Lis, C. Madic, G. Meinrath, C. Moulin, R. Nagaishi, D. Parker, G. Plancque, F. Scherbaum, E. Simoni, S. Sinkov, and C. Viallesoubranne, “Aqueous solutions of uranium(VI) as studied by time-resolved emission spectroscopy: A round-robin test,” Appl. Spectrosc.57, 1027–1038 (2003).
[CrossRef] [PubMed]

2000 (3)

D. W. Shoesmith, “Fuel corrosion processes under waste disposal conditions,” J. Nucl. Mater.282, 1–31 (2000).
[CrossRef]

H. Zanker, W. Richter, V. Brendler, and H. Nitsche, “Colloid-borne uranium anf other heavy metals in the water of mine drainage gallery,” Radiochim. Acta88, 619–624 (2000).
[CrossRef]

A. B. Yusov and V. P. Shilov, “Photochemistry of f-elements ions,” Russ. Chem. Bull.49, 1925–1953 (2000).
[CrossRef]

1998 (2)

S. Tsushima, S. Nagasaki, S. Tanaka, and A. Suzuki, “A raman spectroscopic study of uranyl species adsorbed onto colloidal particles,” J. Phys. Chem. B102, 9029–9032 (1998).
[CrossRef]

Z. Fazekas, T. Yamamura, and H. Tomiyasu, “Deactivation and luminescence lifetimes of excited uranyl ion and its fluoro complexes,” J. All. Comp.271, 756–759 (1998).
[CrossRef]

1997 (2)

J. Beitz and C. Williams, “Uranyl fluoride luminescence in acidic aqueous solutions,” J. All. Comp.250, 375–379 (1997).
[CrossRef]

A. Bakac and H. Burrows, “Uranyl ion: A convenient standard for transient molar absorption coefficient measurements,” Appl. Spectrosc.51, 1916–1917 (1997).
[CrossRef]

1996 (2)

G. Geipel, A. Brachmann, V. Brendler, G. Bernhard, and H. Nitsche, “Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS),” Radiochim. Acta75, 199–204 (1996).

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. 1. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron.2, 847–860 (1996).
[CrossRef]

1992 (2)

J. Fuger, “Thermodynamic properties of actinides aqueous species relevant to geochemical problems,” Radiochim. Acta58/59, 81–91 (1992).

S. Nguyen, R. Silva, H. Weed, and J. Andrews, “Standard gibbs free-energies of formation at the temperature 303.15-k of 4 uranyl silicates - soddyite, uranophane, sodium boltwoodite, and sodium weeksite,” J. Chem. Therm.24, 359–376 (1992).
[CrossRef]

1991 (1)

M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. G. M. Miguel, A. P. Daramanyan, and I. V. Khudyakov, “On the uranyl ion luminescence in aqueous solutions,” J. Lumin.48–49, 522–526 (1991).
[CrossRef]

1990 (1)

Y. Park, Y. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, and H. Tomiyasuk, “Deactivation Mechanism of Excited Uranium(VI) Complexes in Aqueous Solutions,” J. Chem. Soc. Faraday Trans.86, 55–60 (1990).
[CrossRef]

1987 (1)

T. J. Barker, R. G. Denning, and J. R. G. Thorne, “Applications of Two-Photon Spectroscopy to Inorganic Compounds. 1. Spectrum and Electronic Structure of Cs2UO2Cl4,” Inorg. Chem.26, 1721–1732 (1987)
[CrossRef]

1985 (1)

H. Burrows, A. Cardoso, S. Formosinho, and M. Miguel, “Photophysics of the excited uranyl-ion in aqueous-solutions .4. Quenching by metal-ions,” J. Chem. Soc. Faraday Trans. I81, 49–60 (1985).
[CrossRef]

1983 (1)

D. Nikogosyan, A. Oraevsky, and V. Rupasov, “2-photon ionization and dissociation of liquid water by powerful laser uv-radiation,” Chem. Phys.77, 131–143 (1983).
[CrossRef]

1979 (1)

Y. Yokoyama, M. Moriyasu, and S. Ikeda, “Electron transfer mechanism in quenching of uranyl luminescence by halide ions,” J. Inorg. Nucl. Chem., 38, 1329–1333 (1979).
[CrossRef]

1977 (2)

M. Moriyasu, Y. Yokoyama, and S. Ikeda, “Anion coordination to uranyl ion and the luminescence lifetime of the uranyl complex,” J. Inorg. Nucl. Chem.39, 2199–2203 (1977).
[CrossRef]

M. Marcantonatos, “Mechanism of quenching of uranyl-ion luminescence by metal-ions,” Inorg. Chim. Acta24, 53–55 (1977).
[CrossRef]

1976 (1)

G. Marx and H. Bischoff, “Transport processes of actinides in electrolyte-solutions. 1. Determination of ionic mobilities of uranium in aqueous-solutions at 25° by radioisotope method,” J. Radioan. Chem.30, 567–581 (1976).
[CrossRef]

1974 (1)

R. Hill, T. Kemp, D. Allen, and A. Cox, “Absorption-spectrum, lifetime and photoreactivity towards alcohols of excited-state of aqueous uranyl-ion (UO2+/2),” J. Chem. Soc. Faraday Trans. I70, 847–857 (1974).
[CrossRef]

1965 (1)

J. Bell and R. Biggers, “Absorption spectrum of uranyl ion in perchlorate media. I. Mathematical resolution of overlapping band structure and studies of environmental effects,” J. Mol. Spectrosc.18, 247–275 (1965).
[CrossRef]

1963 (1)

H. Sternlicht, G. Robinson, and G. Nieman, “Triplet-triplet annihilation and delayed fluorescence in molecular aggregates,” J. Chem. Phys.38, 1326–1335 (1963).
[CrossRef]

1961 (1)

S. McGlynn and J. Smith, “Electronic structure, spectra, and magnetic properties of actinyl ions. 1. Uranyl ion,” J. Mol. Sp.6, 164–187 (1961).
[CrossRef]

1953 (1)

D. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21, 836–850 (1953).
[CrossRef]

1948 (1)

T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys.2, 55–75 (1948).
[CrossRef]

1929 (1)

S. I. Wawilow, “The lifetime of the excited molecules in the fluorescent aqueous solutions,” Zeitschr. Phys.53, 665–674 (1929).
[CrossRef]

1917 (1)

M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen,” Zeitschr. Phys. Chem.92, 129–168 (1917).

1905 (1)

A. Einstein, “The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat,” Ann. Phys.17, 549–560 (1905).
[CrossRef]

Abe, R.

Y. Park, Y. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, and H. Tomiyasuk, “Deactivation Mechanism of Excited Uranium(VI) Complexes in Aqueous Solutions,” J. Chem. Soc. Faraday Trans.86, 55–60 (1990).
[CrossRef]

Allen, D.

R. Hill, T. Kemp, D. Allen, and A. Cox, “Absorption-spectrum, lifetime and photoreactivity towards alcohols of excited-state of aqueous uranyl-ion (UO2+/2),” J. Chem. Soc. Faraday Trans. I70, 847–857 (1974).
[CrossRef]

Amekraz, B.

T. Vercouter, P. Vitorge, B. Amekraz, and C. Moulin, “Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(VI),” Inorg. Chem.47, 2180–2189 (2008).
[CrossRef] [PubMed]

Andrews, J.

S. Nguyen, R. Silva, H. Weed, and J. Andrews, “Standard gibbs free-energies of formation at the temperature 303.15-k of 4 uranyl silicates - soddyite, uranophane, sodium boltwoodite, and sodium weeksite,” J. Chem. Therm.24, 359–376 (1992).
[CrossRef]

Ansoborlo, E.

Aoyagi, N.

R. N. Collins, T. Saito, N. Aoyagi, T. E. Payne, T. Kimura, and T. D. Waite, “Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides,” J. Env. Qual.40, 731–741 (2011).
[CrossRef]

Apperson, K.

Arnold, T.

T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk, and S. Weiss, “Identification of the uranium speciation in an underground acid mine drainage environment,” Geochim. Cosmochim. Acta75, 2200–2212 (2011).
[CrossRef]

Arpigny, S.

Azenha, M.

Azenha, M. E. D. G.

M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. G. M. Miguel, A. P. Daramanyan, and I. V. Khudyakov, “On the uranyl ion luminescence in aqueous solutions,” J. Lumin.48–49, 522–526 (1991).
[CrossRef]

Bakac, A.

Banishev, A. A.

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A Nanosecond Laser Fluorimeter,” Phys. Instrum. Ecolog. Med. Biolog.49, 430–434 (2006).

Barker, T. J.

T. J. Barker, R. G. Denning, and J. R. G. Thorne, “Applications of Two-Photon Spectroscopy to Inorganic Compounds. 1. Spectrum and Electronic Structure of Cs2UO2Cl4,” Inorg. Chem.26, 1721–1732 (1987)
[CrossRef]

Baumann, N.

T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk, and S. Weiss, “Identification of the uranium speciation in an underground acid mine drainage environment,” Geochim. Cosmochim. Acta75, 2200–2212 (2011).
[CrossRef]

Beitz, J.

J. Beitz and C. Williams, “Uranyl fluoride luminescence in acidic aqueous solutions,” J. All. Comp.250, 375–379 (1997).
[CrossRef]

Bell, J.

J. Bell and R. Biggers, “Absorption spectrum of uranyl ion in perchlorate media. I. Mathematical resolution of overlapping band structure and studies of environmental effects,” J. Mol. Spectrosc.18, 247–275 (1965).
[CrossRef]

Bernhard, G.

G. Geipel, A. Brachmann, V. Brendler, G. Bernhard, and H. Nitsche, “Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS),” Radiochim. Acta75, 199–204 (1996).

Biggers, R.

J. Bell and R. Biggers, “Absorption spectrum of uranyl ion in perchlorate media. I. Mathematical resolution of overlapping band structure and studies of environmental effects,” J. Mol. Spectrosc.18, 247–275 (1965).
[CrossRef]

Billard, I.

Birch, D.

Bischoff, H.

G. Marx and H. Bischoff, “Transport processes of actinides in electrolyte-solutions. 1. Determination of ionic mobilities of uranium in aqueous-solutions at 25° by radioisotope method,” J. Radioan. Chem.30, 567–581 (1976).
[CrossRef]

Bolte, M.

S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003).
[CrossRef]

Brachmann, A.

G. Geipel, A. Brachmann, V. Brendler, G. Bernhard, and H. Nitsche, “Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS),” Radiochim. Acta75, 199–204 (1996).

Brendler, V.

H. Zanker, W. Richter, V. Brendler, and H. Nitsche, “Colloid-borne uranium anf other heavy metals in the water of mine drainage gallery,” Radiochim. Acta88, 619–624 (2000).
[CrossRef]

G. Geipel, A. Brachmann, V. Brendler, G. Bernhard, and H. Nitsche, “Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS),” Radiochim. Acta75, 199–204 (1996).

Brockmann, S.

T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk, and S. Weiss, “Identification of the uranium speciation in an underground acid mine drainage environment,” Geochim. Cosmochim. Acta75, 2200–2212 (2011).
[CrossRef]

Bros, P.

Burns, P. C.

P. C. Burns, R. C. Ewing, and A. Navrotsky, “Nuclear fuel after a reactor accident,” Science335, 1184–1188 (2012).
[CrossRef] [PubMed]

Burrows, H.

Burrows, H. D.

M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. G. M. Miguel, A. P. Daramanyan, and I. V. Khudyakov, “On the uranyl ion luminescence in aqueous solutions,” J. Lumin.48–49, 522–526 (1991).
[CrossRef]

Cardoso, A.

H. Burrows, A. Cardoso, S. Formosinho, and M. Miguel, “Photophysics of the excited uranyl-ion in aqueous-solutions .4. Quenching by metal-ions,” J. Chem. Soc. Faraday Trans. I81, 49–60 (1985).
[CrossRef]

Choppin, G.

Collins, R. N.

R. N. Collins, T. Saito, N. Aoyagi, T. E. Payne, T. Kimura, and T. D. Waite, “Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides,” J. Env. Qual.40, 731–741 (2011).
[CrossRef]

Couston, L.

Cox, A.

R. Hill, T. Kemp, D. Allen, and A. Cox, “Absorption-spectrum, lifetime and photoreactivity towards alcohols of excited-state of aqueous uranyl-ion (UO2+/2),” J. Chem. Soc. Faraday Trans. I70, 847–857 (1974).
[CrossRef]

Daramanyan, A. P.

M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. G. M. Miguel, A. P. Daramanyan, and I. V. Khudyakov, “On the uranyl ion luminescence in aqueous solutions,” J. Lumin.48–49, 522–526 (1991).
[CrossRef]

Denning, R. G.

R. G. Denning, “Electronic structure and bonding in actinyl ions and their analogs,” J. Phys. Chem. A111, 4125–4143 (2007).
[CrossRef] [PubMed]

T. J. Barker, R. G. Denning, and J. R. G. Thorne, “Applications of Two-Photon Spectroscopy to Inorganic Compounds. 1. Spectrum and Electronic Structure of Cs2UO2Cl4,” Inorg. Chem.26, 1721–1732 (1987)
[CrossRef]

Dexter, D.

D. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21, 836–850 (1953).
[CrossRef]

Dieke, G. H.

G. H. Dieke and A. B. F. Duncan, Spectroscopic properties of uranium compounds (McGraw-Hill Book Co, 1949).

Dubois, V.

Duncan, A. B. F.

G. H. Dieke and A. B. F. Duncan, Spectroscopic properties of uranium compounds (McGraw-Hill Book Co, 1949).

Einstein, A.

A. Einstein, “The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat,” Ann. Phys.17, 549–560 (1905).
[CrossRef]

Ewing, R. C.

P. C. Burns, R. C. Ewing, and A. Navrotsky, “Nuclear fuel after a reactor accident,” Science335, 1184–1188 (2012).
[CrossRef] [PubMed]

Fadeev, V. V.

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A Nanosecond Laser Fluorimeter,” Phys. Instrum. Ecolog. Med. Biolog.49, 430–434 (2006).

Fanghanel, T.

Fanghänel, T.

R. Guillaumont, T. Fanghänel, J. Fuger, J. Grenthe, V. Neck, D. Palmer, and M. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, (Elsevier Science Publishers B.V., 2003).

Fazekas, Z.

Z. Fazekas, T. Yamamura, and H. Tomiyasu, “Deactivation and luminescence lifetimes of excited uranyl ion and its fluoro complexes,” J. All. Comp.271, 756–759 (1998).
[CrossRef]

Ferry, C.

L. Johnson, C. Ferry, Ch. Poinssot, and P. Lovera, “Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal,” J. Nucl. Mater.346, 56–65 (2005).
[CrossRef]

Formosinho, S.

S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003).
[CrossRef]

H. Burrows, A. Cardoso, S. Formosinho, and M. Miguel, “Photophysics of the excited uranyl-ion in aqueous-solutions .4. Quenching by metal-ions,” J. Chem. Soc. Faraday Trans. I81, 49–60 (1985).
[CrossRef]

Formosinho, S. J.

M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. G. M. Miguel, A. P. Daramanyan, and I. V. Khudyakov, “On the uranyl ion luminescence in aqueous solutions,” J. Lumin.48–49, 522–526 (1991).
[CrossRef]

Förster, T.

T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys.2, 55–75 (1948).
[CrossRef]

Fuger, J.

J. Fuger, “Thermodynamic properties of actinides aqueous species relevant to geochemical problems,” Radiochim. Acta58/59, 81–91 (1992).

R. Guillaumont, T. Fanghänel, J. Fuger, J. Grenthe, V. Neck, D. Palmer, and M. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, (Elsevier Science Publishers B.V., 2003).

Gasanov, R.

S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003).
[CrossRef]

Geipel, G.

Ghosh, H. N.

R. Ghosh, J. A. Mondal, H. N. Ghosh, and D. K. Palit, “Ultrafast Dynamics of the Excited States of the Uranyl Ion in Solutions,” J. Phys. Chem. A114, 5263–5270 (2010).
[CrossRef] [PubMed]

Ghosh, R.

R. Ghosh, J. A. Mondal, H. N. Ghosh, and D. K. Palit, “Ultrafast Dynamics of the Excited States of the Uranyl Ion in Solutions,” J. Phys. Chem. A114, 5263–5270 (2010).
[CrossRef] [PubMed]

Grenthe, I.

P. Wahlin, V. Vallet, U. Wahlgren, and I. Grenthe, “Water Exchange Mechanism in the First Excited State of Hydrated Uranyl(VI)” Inorg. Chem.48, 11310–11313 (2009).
[CrossRef] [PubMed]

Z. Szabo, T. Toraishi, V. Vallet, and I. Grenthe, “Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms,” Coord. Chem. Rev.250, 784–815 (2006).
[CrossRef]

I. Grenthe, Chemical Thermodynamics of Uranium, (Universal, 1992).

Grenthe, J.

R. Guillaumont, T. Fanghänel, J. Fuger, J. Grenthe, V. Neck, D. Palmer, and M. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, (Elsevier Science Publishers B.V., 2003).

Guillaumont, R.

R. Guillaumont, T. Fanghänel, J. Fuger, J. Grenthe, V. Neck, D. Palmer, and M. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, (Elsevier Science Publishers B.V., 2003).

Harada, M.

Y. Park, Y. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, and H. Tomiyasuk, “Deactivation Mechanism of Excited Uranium(VI) Complexes in Aqueous Solutions,” J. Chem. Soc. Faraday Trans.86, 55–60 (1990).
[CrossRef]

Hill, R.

R. Hill, T. Kemp, D. Allen, and A. Cox, “Absorption-spectrum, lifetime and photoreactivity towards alcohols of excited-state of aqueous uranyl-ion (UO2+/2),” J. Chem. Soc. Faraday Trans. I70, 847–857 (1974).
[CrossRef]

Hubert, S.

Ikeda, S.

Y. Yokoyama, M. Moriyasu, and S. Ikeda, “Electron transfer mechanism in quenching of uranyl luminescence by halide ions,” J. Inorg. Nucl. Chem., 38, 1329–1333 (1979).
[CrossRef]

M. Moriyasu, Y. Yokoyama, and S. Ikeda, “Anion coordination to uranyl ion and the luminescence lifetime of the uranyl complex,” J. Inorg. Nucl. Chem.39, 2199–2203 (1977).
[CrossRef]

Ishii, T.

Y. Park, Y. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, and H. Tomiyasuk, “Deactivation Mechanism of Excited Uranium(VI) Complexes in Aqueous Solutions,” J. Chem. Soc. Faraday Trans.86, 55–60 (1990).
[CrossRef]

Jenk, U.

T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk, and S. Weiss, “Identification of the uranium speciation in an underground acid mine drainage environment,” Geochim. Cosmochim. Acta75, 2200–2212 (2011).
[CrossRef]

Johnson, L.

L. Johnson, C. Ferry, Ch. Poinssot, and P. Lovera, “Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal,” J. Nucl. Mater.346, 56–65 (2005).
[CrossRef]

Kazakov, V. P.

S. V. Lotnik, L. A. Khamidullina, and V. P. Kazakov, “Influence of temperature on the lifetime of electronically excited uranyl ion: I. Liquid and supercooled H2SO4 solutions” Radiochem.45, 550–554 (2003)
[CrossRef]

Keith-Roach, M.

C. May, P. Worsfold, and M. Keith-Roach, “Analytical techniques for speciation analysis of aqueous long-lived radionuclides in environmental matrices,” Trends Anal. Chem.27, 160–168 (2008).
[CrossRef]

Kemp, T.

R. Hill, T. Kemp, D. Allen, and A. Cox, “Absorption-spectrum, lifetime and photoreactivity towards alcohols of excited-state of aqueous uranyl-ion (UO2+/2),” J. Chem. Soc. Faraday Trans. I70, 847–857 (1974).
[CrossRef]

Kerisit, S.

S. Kerisit and C. Liu, “Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution,” Geochim. Cosmochim. Acta74, 4937–4952 (2010).
[CrossRef]

Khamidullina, L. A.

S. V. Lotnik, L. A. Khamidullina, and V. P. Kazakov, “Influence of temperature on the lifetime of electronically excited uranyl ion: I. Liquid and supercooled H2SO4 solutions” Radiochem.45, 550–554 (2003)
[CrossRef]

Khudyakov, I.

S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003).
[CrossRef]

Khudyakov, I. V.

M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. G. M. Miguel, A. P. Daramanyan, and I. V. Khudyakov, “On the uranyl ion luminescence in aqueous solutions,” J. Lumin.48–49, 522–526 (1991).
[CrossRef]

Kim, J.

Kimura, T.

R. N. Collins, T. Saito, N. Aoyagi, T. E. Payne, T. Kimura, and T. D. Waite, “Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides,” J. Env. Qual.40, 731–741 (2011).
[CrossRef]

A. Kirishima, T. Kimura, O. Tochiyama, and Z. Yoshida, “Speciation study on complex formation of uranium(VI) with phosphate and uoride at high temperatures and pressures by time-resolved laser-induced uorescence spectroscopy,” Radiochim. Acta92, 889–896 (2004).
[CrossRef]

I. Billard, E. Ansoborlo, K. Apperson, S. Arpigny, M. Azenha, D. Birch, P. Bros, H. Burrows, G. Choppin, L. Couston, V. Dubois, T. Fanghanel, G. Geipel, S. Hubert, J. Kim, T. Kimura, R. Klenze, A. Kronenberg, M. Kumke, G. Lagarde, G. Lamarque, S. Lis, C. Madic, G. Meinrath, C. Moulin, R. Nagaishi, D. Parker, G. Plancque, F. Scherbaum, E. Simoni, S. Sinkov, and C. Viallesoubranne, “Aqueous solutions of uranium(VI) as studied by time-resolved emission spectroscopy: A round-robin test,” Appl. Spectrosc.57, 1027–1038 (2003).
[CrossRef] [PubMed]

Kirishima, A.

A. Kirishima, T. Kimura, O. Tochiyama, and Z. Yoshida, “Speciation study on complex formation of uranium(VI) with phosphate and uoride at high temperatures and pressures by time-resolved laser-induced uorescence spectroscopy,” Radiochim. Acta92, 889–896 (2004).
[CrossRef]

Klenze, R.

Kojima, T.

Y. Park, Y. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, and H. Tomiyasuk, “Deactivation Mechanism of Excited Uranium(VI) Complexes in Aqueous Solutions,” J. Chem. Soc. Faraday Trans.86, 55–60 (1990).
[CrossRef]

Krawczyk-Bärsch, E.

T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk, and S. Weiss, “Identification of the uranium speciation in an underground acid mine drainage environment,” Geochim. Cosmochim. Acta75, 2200–2212 (2011).
[CrossRef]

Kronenberg, A.

Kudryashov, S.

S. Kudryashov and V. Zvorykin, “Microscale nanosecond laser-induced optical breakdown in water,” Phys. Rev. E78, 036404 (2008).
[CrossRef]

Kumke, M.

Lagarde, G.

Lamarque, G.

Lis, S.

Liu, C.

S. Kerisit and C. Liu, “Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution,” Geochim. Cosmochim. Acta74, 4937–4952 (2010).
[CrossRef]

Lotnik, S. V.

S. V. Lotnik, L. A. Khamidullina, and V. P. Kazakov, “Influence of temperature on the lifetime of electronically excited uranyl ion: I. Liquid and supercooled H2SO4 solutions” Radiochem.45, 550–554 (2003)
[CrossRef]

Lovera, P.

L. Johnson, C. Ferry, Ch. Poinssot, and P. Lovera, “Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal,” J. Nucl. Mater.346, 56–65 (2005).
[CrossRef]

Lutzenkirchen, K.

I. Billard and K. Lutzenkirchen, “Equilibrium constants in aqueous lanthanide and actinide chemistry from time-resolved fluorescence spectroscopy: The role of ground and excited state reactions,” Radiochim. Acta91, 285–294 (2003).
[CrossRef]

Madic, C.

Marcantonatos, M.

M. Marcantonatos, “Mechanism of quenching of uranyl-ion luminescence by metal-ions,” Inorg. Chim. Acta24, 53–55 (1977).
[CrossRef]

Marx, G.

G. Marx and H. Bischoff, “Transport processes of actinides in electrolyte-solutions. 1. Determination of ionic mobilities of uranium in aqueous-solutions at 25° by radioisotope method,” J. Radioan. Chem.30, 567–581 (1976).
[CrossRef]

Maslov, D. V.

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A Nanosecond Laser Fluorimeter,” Phys. Instrum. Ecolog. Med. Biolog.49, 430–434 (2006).

May, C.

C. May, P. Worsfold, and M. Keith-Roach, “Analytical techniques for speciation analysis of aqueous long-lived radionuclides in environmental matrices,” Trends Anal. Chem.27, 160–168 (2008).
[CrossRef]

McGlynn, S.

S. McGlynn and J. Smith, “Electronic structure, spectra, and magnetic properties of actinyl ions. 1. Uranyl ion,” J. Mol. Sp.6, 164–187 (1961).
[CrossRef]

Meinardi, F.

A. Monguzzi, R. Tubino, and F. Meinardi, “Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer,” Phys. Rev. B77, 196112 (2008).

Meinrath, A.

A. Meinrath, P. Schneider, and G. Meinrath, “Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany,” J. Env. Radioact.64, 175–193 (2003).
[CrossRef]

Meinrath, G.

Miguel, M.

S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003).
[CrossRef]

H. Burrows, A. Cardoso, S. Formosinho, and M. Miguel, “Photophysics of the excited uranyl-ion in aqueous-solutions .4. Quenching by metal-ions,” J. Chem. Soc. Faraday Trans. I81, 49–60 (1985).
[CrossRef]

Miguel, M. G. M.

M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. G. M. Miguel, A. P. Daramanyan, and I. V. Khudyakov, “On the uranyl ion luminescence in aqueous solutions,” J. Lumin.48–49, 522–526 (1991).
[CrossRef]

Mondal, J. A.

R. Ghosh, J. A. Mondal, H. N. Ghosh, and D. K. Palit, “Ultrafast Dynamics of the Excited States of the Uranyl Ion in Solutions,” J. Phys. Chem. A114, 5263–5270 (2010).
[CrossRef] [PubMed]

Monguzzi, A.

A. Monguzzi, R. Tubino, and F. Meinardi, “Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer,” Phys. Rev. B77, 196112 (2008).

Moriyasu, M.

Y. Yokoyama, M. Moriyasu, and S. Ikeda, “Electron transfer mechanism in quenching of uranyl luminescence by halide ions,” J. Inorg. Nucl. Chem., 38, 1329–1333 (1979).
[CrossRef]

M. Moriyasu, Y. Yokoyama, and S. Ikeda, “Anion coordination to uranyl ion and the luminescence lifetime of the uranyl complex,” J. Inorg. Nucl. Chem.39, 2199–2203 (1977).
[CrossRef]

Moulin, C.

Nagaishi, R.

Nagasaki, S.

S. Tsushima, S. Nagasaki, S. Tanaka, and A. Suzuki, “A raman spectroscopic study of uranyl species adsorbed onto colloidal particles,” J. Phys. Chem. B102, 9029–9032 (1998).
[CrossRef]

Nahen, K.

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. 1. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron.2, 847–860 (1996).
[CrossRef]

Navrotsky, A.

P. C. Burns, R. C. Ewing, and A. Navrotsky, “Nuclear fuel after a reactor accident,” Science335, 1184–1188 (2012).
[CrossRef] [PubMed]

Neck, V.

R. Guillaumont, T. Fanghänel, J. Fuger, J. Grenthe, V. Neck, D. Palmer, and M. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, (Elsevier Science Publishers B.V., 2003).

Nguyen, S.

S. Nguyen, R. Silva, H. Weed, and J. Andrews, “Standard gibbs free-energies of formation at the temperature 303.15-k of 4 uranyl silicates - soddyite, uranophane, sodium boltwoodite, and sodium weeksite,” J. Chem. Therm.24, 359–376 (1992).
[CrossRef]

Nieman, G.

H. Sternlicht, G. Robinson, and G. Nieman, “Triplet-triplet annihilation and delayed fluorescence in molecular aggregates,” J. Chem. Phys.38, 1326–1335 (1963).
[CrossRef]

Nikogosyan, D.

D. Nikogosyan, A. Oraevsky, and V. Rupasov, “2-photon ionization and dissociation of liquid water by powerful laser uv-radiation,” Chem. Phys.77, 131–143 (1983).
[CrossRef]

Nitsche, H.

H. Zanker, W. Richter, V. Brendler, and H. Nitsche, “Colloid-borne uranium anf other heavy metals in the water of mine drainage gallery,” Radiochim. Acta88, 619–624 (2000).
[CrossRef]

G. Geipel, A. Brachmann, V. Brendler, G. Bernhard, and H. Nitsche, “Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS),” Radiochim. Acta75, 199–204 (1996).

Noack, J.

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. 1. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron.2, 847–860 (1996).
[CrossRef]

Oraevsky, A.

D. Nikogosyan, A. Oraevsky, and V. Rupasov, “2-photon ionization and dissociation of liquid water by powerful laser uv-radiation,” Chem. Phys.77, 131–143 (1983).
[CrossRef]

Palit, D. K.

R. Ghosh, J. A. Mondal, H. N. Ghosh, and D. K. Palit, “Ultrafast Dynamics of the Excited States of the Uranyl Ion in Solutions,” J. Phys. Chem. A114, 5263–5270 (2010).
[CrossRef] [PubMed]

Palmer, D.

R. Guillaumont, T. Fanghänel, J. Fuger, J. Grenthe, V. Neck, D. Palmer, and M. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, (Elsevier Science Publishers B.V., 2003).

Park, Y.

Y. Park, Y. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, and H. Tomiyasuk, “Deactivation Mechanism of Excited Uranium(VI) Complexes in Aqueous Solutions,” J. Chem. Soc. Faraday Trans.86, 55–60 (1990).
[CrossRef]

Parker, D.

Payne, T. E.

R. N. Collins, T. Saito, N. Aoyagi, T. E. Payne, T. Kimura, and T. D. Waite, “Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides,” J. Env. Qual.40, 731–741 (2011).
[CrossRef]

Plancque, G.

Poinssot, Ch.

L. Johnson, C. Ferry, Ch. Poinssot, and P. Lovera, “Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal,” J. Nucl. Mater.346, 56–65 (2005).
[CrossRef]

Rand, M.

R. Guillaumont, T. Fanghänel, J. Fuger, J. Grenthe, V. Neck, D. Palmer, and M. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, (Elsevier Science Publishers B.V., 2003).

Ribeiro, A.

S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003).
[CrossRef]

Richter, W.

H. Zanker, W. Richter, V. Brendler, and H. Nitsche, “Colloid-borne uranium anf other heavy metals in the water of mine drainage gallery,” Radiochim. Acta88, 619–624 (2000).
[CrossRef]

Robinson, G.

H. Sternlicht, G. Robinson, and G. Nieman, “Triplet-triplet annihilation and delayed fluorescence in molecular aggregates,” J. Chem. Phys.38, 1326–1335 (1963).
[CrossRef]

Rupasov, V.

D. Nikogosyan, A. Oraevsky, and V. Rupasov, “2-photon ionization and dissociation of liquid water by powerful laser uv-radiation,” Chem. Phys.77, 131–143 (1983).
[CrossRef]

Saito, T.

R. N. Collins, T. Saito, N. Aoyagi, T. E. Payne, T. Kimura, and T. D. Waite, “Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides,” J. Env. Qual.40, 731–741 (2011).
[CrossRef]

Sakai, Y.

Y. Park, Y. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, and H. Tomiyasuk, “Deactivation Mechanism of Excited Uranium(VI) Complexes in Aqueous Solutions,” J. Chem. Soc. Faraday Trans.86, 55–60 (1990).
[CrossRef]

Saraiva, I.

S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003).
[CrossRef]

Sarakha, M.

S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003).
[CrossRef]

Scherbaum, F.

Schneider, P.

A. Meinrath, P. Schneider, and G. Meinrath, “Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany,” J. Env. Radioact.64, 175–193 (2003).
[CrossRef]

Shilov, V. P.

A. B. Yusov and V. P. Shilov, “Photochemistry of f-elements ions,” Russ. Chem. Bull.49, 1925–1953 (2000).
[CrossRef]

Shoesmith, D. W.

D. W. Shoesmith, “Fuel corrosion processes under waste disposal conditions,” J. Nucl. Mater.282, 1–31 (2000).
[CrossRef]

Silva, R.

S. Nguyen, R. Silva, H. Weed, and J. Andrews, “Standard gibbs free-energies of formation at the temperature 303.15-k of 4 uranyl silicates - soddyite, uranophane, sodium boltwoodite, and sodium weeksite,” J. Chem. Therm.24, 359–376 (1992).
[CrossRef]

Simoni, E.

Sinkov, S.

Smith, J.

S. McGlynn and J. Smith, “Electronic structure, spectra, and magnetic properties of actinyl ions. 1. Uranyl ion,” J. Mol. Sp.6, 164–187 (1961).
[CrossRef]

Sternlicht, H.

H. Sternlicht, G. Robinson, and G. Nieman, “Triplet-triplet annihilation and delayed fluorescence in molecular aggregates,” J. Chem. Phys.38, 1326–1335 (1963).
[CrossRef]

Suzuki, A.

S. Tsushima, S. Nagasaki, S. Tanaka, and A. Suzuki, “A raman spectroscopic study of uranyl species adsorbed onto colloidal particles,” J. Phys. Chem. B102, 9029–9032 (1998).
[CrossRef]

Szabo, Z.

Z. Szabo, T. Toraishi, V. Vallet, and I. Grenthe, “Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms,” Coord. Chem. Rev.250, 784–815 (2006).
[CrossRef]

Tanaka, S.

S. Tsushima, S. Nagasaki, S. Tanaka, and A. Suzuki, “A raman spectroscopic study of uranyl species adsorbed onto colloidal particles,” J. Phys. Chem. B102, 9029–9032 (1998).
[CrossRef]

Theisen, D.

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. 1. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron.2, 847–860 (1996).
[CrossRef]

Thorne, J. R. G.

T. J. Barker, R. G. Denning, and J. R. G. Thorne, “Applications of Two-Photon Spectroscopy to Inorganic Compounds. 1. Spectrum and Electronic Structure of Cs2UO2Cl4,” Inorg. Chem.26, 1721–1732 (1987)
[CrossRef]

Tochiyama, O.

A. Kirishima, T. Kimura, O. Tochiyama, and Z. Yoshida, “Speciation study on complex formation of uranium(VI) with phosphate and uoride at high temperatures and pressures by time-resolved laser-induced uorescence spectroscopy,” Radiochim. Acta92, 889–896 (2004).
[CrossRef]

Tomiyasu, H.

Z. Fazekas, T. Yamamura, and H. Tomiyasu, “Deactivation and luminescence lifetimes of excited uranyl ion and its fluoro complexes,” J. All. Comp.271, 756–759 (1998).
[CrossRef]

Tomiyasuk, H.

Y. Park, Y. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, and H. Tomiyasuk, “Deactivation Mechanism of Excited Uranium(VI) Complexes in Aqueous Solutions,” J. Chem. Soc. Faraday Trans.86, 55–60 (1990).
[CrossRef]

Toraishi, T.

Z. Szabo, T. Toraishi, V. Vallet, and I. Grenthe, “Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms,” Coord. Chem. Rev.250, 784–815 (2006).
[CrossRef]

Tsushima, S.

S. Tsushima, S. Nagasaki, S. Tanaka, and A. Suzuki, “A raman spectroscopic study of uranyl species adsorbed onto colloidal particles,” J. Phys. Chem. B102, 9029–9032 (1998).
[CrossRef]

Tubino, R.

A. Monguzzi, R. Tubino, and F. Meinardi, “Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer,” Phys. Rev. B77, 196112 (2008).

Vallet, V.

P. Wahlin, V. Vallet, U. Wahlgren, and I. Grenthe, “Water Exchange Mechanism in the First Excited State of Hydrated Uranyl(VI)” Inorg. Chem.48, 11310–11313 (2009).
[CrossRef] [PubMed]

Z. Szabo, T. Toraishi, V. Vallet, and I. Grenthe, “Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms,” Coord. Chem. Rev.250, 784–815 (2006).
[CrossRef]

Vercouter, T.

T. Vercouter, P. Vitorge, B. Amekraz, and C. Moulin, “Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(VI),” Inorg. Chem.47, 2180–2189 (2008).
[CrossRef] [PubMed]

Viallesoubranne, C.

Vitorge, P.

T. Vercouter, P. Vitorge, B. Amekraz, and C. Moulin, “Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(VI),” Inorg. Chem.47, 2180–2189 (2008).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. 1. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron.2, 847–860 (1996).
[CrossRef]

von Smoluchowski, M.

M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen,” Zeitschr. Phys. Chem.92, 129–168 (1917).

Wahlgren, U.

P. Wahlin, V. Vallet, U. Wahlgren, and I. Grenthe, “Water Exchange Mechanism in the First Excited State of Hydrated Uranyl(VI)” Inorg. Chem.48, 11310–11313 (2009).
[CrossRef] [PubMed]

Wahlin, P.

P. Wahlin, V. Vallet, U. Wahlgren, and I. Grenthe, “Water Exchange Mechanism in the First Excited State of Hydrated Uranyl(VI)” Inorg. Chem.48, 11310–11313 (2009).
[CrossRef] [PubMed]

Waite, T. D.

R. N. Collins, T. Saito, N. Aoyagi, T. E. Payne, T. Kimura, and T. D. Waite, “Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides,” J. Env. Qual.40, 731–741 (2011).
[CrossRef]

Wawilow, S. I.

S. I. Wawilow, “The lifetime of the excited molecules in the fluorescent aqueous solutions,” Zeitschr. Phys.53, 665–674 (1929).
[CrossRef]

Weed, H.

S. Nguyen, R. Silva, H. Weed, and J. Andrews, “Standard gibbs free-energies of formation at the temperature 303.15-k of 4 uranyl silicates - soddyite, uranophane, sodium boltwoodite, and sodium weeksite,” J. Chem. Therm.24, 359–376 (1992).
[CrossRef]

Weiss, S.

T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk, and S. Weiss, “Identification of the uranium speciation in an underground acid mine drainage environment,” Geochim. Cosmochim. Acta75, 2200–2212 (2011).
[CrossRef]

Williams, C.

J. Beitz and C. Williams, “Uranyl fluoride luminescence in acidic aqueous solutions,” J. All. Comp.250, 375–379 (1997).
[CrossRef]

Worsfold, P.

C. May, P. Worsfold, and M. Keith-Roach, “Analytical techniques for speciation analysis of aqueous long-lived radionuclides in environmental matrices,” Trends Anal. Chem.27, 160–168 (2008).
[CrossRef]

Yamamura, T.

Z. Fazekas, T. Yamamura, and H. Tomiyasu, “Deactivation and luminescence lifetimes of excited uranyl ion and its fluoro complexes,” J. All. Comp.271, 756–759 (1998).
[CrossRef]

Yokoyama, Y.

Y. Yokoyama, M. Moriyasu, and S. Ikeda, “Electron transfer mechanism in quenching of uranyl luminescence by halide ions,” J. Inorg. Nucl. Chem., 38, 1329–1333 (1979).
[CrossRef]

M. Moriyasu, Y. Yokoyama, and S. Ikeda, “Anion coordination to uranyl ion and the luminescence lifetime of the uranyl complex,” J. Inorg. Nucl. Chem.39, 2199–2203 (1977).
[CrossRef]

Yoshida, Z.

A. Kirishima, T. Kimura, O. Tochiyama, and Z. Yoshida, “Speciation study on complex formation of uranium(VI) with phosphate and uoride at high temperatures and pressures by time-resolved laser-induced uorescence spectroscopy,” Radiochim. Acta92, 889–896 (2004).
[CrossRef]

Yusov, A. B.

A. B. Yusov and V. P. Shilov, “Photochemistry of f-elements ions,” Russ. Chem. Bull.49, 1925–1953 (2000).
[CrossRef]

Zanker, H.

H. Zanker, W. Richter, V. Brendler, and H. Nitsche, “Colloid-borne uranium anf other heavy metals in the water of mine drainage gallery,” Radiochim. Acta88, 619–624 (2000).
[CrossRef]

Zimmermann, U.

T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk, and S. Weiss, “Identification of the uranium speciation in an underground acid mine drainage environment,” Geochim. Cosmochim. Acta75, 2200–2212 (2011).
[CrossRef]

Zvorykin, V.

S. Kudryashov and V. Zvorykin, “Microscale nanosecond laser-induced optical breakdown in water,” Phys. Rev. E78, 036404 (2008).
[CrossRef]

Ann. Phys. (2)

T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys.2, 55–75 (1948).
[CrossRef]

A. Einstein, “The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat,” Ann. Phys.17, 549–560 (1905).
[CrossRef]

Appl. Spectrosc. (2)

Chem. Phys. (1)

D. Nikogosyan, A. Oraevsky, and V. Rupasov, “2-photon ionization and dissociation of liquid water by powerful laser uv-radiation,” Chem. Phys.77, 131–143 (1983).
[CrossRef]

Coord. Chem. Rev. (2)

G. Geipel, “Some aspects of actinide speciation by laser-induced spectroscopy,” Coord. Chem. Rev.250, 844–854 (2006).
[CrossRef]

Z. Szabo, T. Toraishi, V. Vallet, and I. Grenthe, “Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms,” Coord. Chem. Rev.250, 784–815 (2006).
[CrossRef]

Geochim. Cosmochim. Acta (2)

T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk, and S. Weiss, “Identification of the uranium speciation in an underground acid mine drainage environment,” Geochim. Cosmochim. Acta75, 2200–2212 (2011).
[CrossRef]

S. Kerisit and C. Liu, “Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution,” Geochim. Cosmochim. Acta74, 4937–4952 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Vogel, K. Nahen, D. Theisen, and J. Noack, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. 1. Optical breakdown at threshold and superthreshold irradiance,” IEEE J. Sel. Top. Quantum Electron.2, 847–860 (1996).
[CrossRef]

Inorg. Chem. (3)

T. Vercouter, P. Vitorge, B. Amekraz, and C. Moulin, “Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(VI),” Inorg. Chem.47, 2180–2189 (2008).
[CrossRef] [PubMed]

T. J. Barker, R. G. Denning, and J. R. G. Thorne, “Applications of Two-Photon Spectroscopy to Inorganic Compounds. 1. Spectrum and Electronic Structure of Cs2UO2Cl4,” Inorg. Chem.26, 1721–1732 (1987)
[CrossRef]

P. Wahlin, V. Vallet, U. Wahlgren, and I. Grenthe, “Water Exchange Mechanism in the First Excited State of Hydrated Uranyl(VI)” Inorg. Chem.48, 11310–11313 (2009).
[CrossRef] [PubMed]

Inorg. Chim. Acta (1)

M. Marcantonatos, “Mechanism of quenching of uranyl-ion luminescence by metal-ions,” Inorg. Chim. Acta24, 53–55 (1977).
[CrossRef]

J. All. Comp. (2)

Z. Fazekas, T. Yamamura, and H. Tomiyasu, “Deactivation and luminescence lifetimes of excited uranyl ion and its fluoro complexes,” J. All. Comp.271, 756–759 (1998).
[CrossRef]

J. Beitz and C. Williams, “Uranyl fluoride luminescence in acidic aqueous solutions,” J. All. Comp.250, 375–379 (1997).
[CrossRef]

J. Chem. Phys. (2)

H. Sternlicht, G. Robinson, and G. Nieman, “Triplet-triplet annihilation and delayed fluorescence in molecular aggregates,” J. Chem. Phys.38, 1326–1335 (1963).
[CrossRef]

D. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys.21, 836–850 (1953).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

Y. Park, Y. Sakai, R. Abe, T. Ishii, M. Harada, T. Kojima, and H. Tomiyasuk, “Deactivation Mechanism of Excited Uranium(VI) Complexes in Aqueous Solutions,” J. Chem. Soc. Faraday Trans.86, 55–60 (1990).
[CrossRef]

J. Chem. Soc. Faraday Trans. I (2)

R. Hill, T. Kemp, D. Allen, and A. Cox, “Absorption-spectrum, lifetime and photoreactivity towards alcohols of excited-state of aqueous uranyl-ion (UO2+/2),” J. Chem. Soc. Faraday Trans. I70, 847–857 (1974).
[CrossRef]

H. Burrows, A. Cardoso, S. Formosinho, and M. Miguel, “Photophysics of the excited uranyl-ion in aqueous-solutions .4. Quenching by metal-ions,” J. Chem. Soc. Faraday Trans. I81, 49–60 (1985).
[CrossRef]

J. Chem. Therm. (1)

S. Nguyen, R. Silva, H. Weed, and J. Andrews, “Standard gibbs free-energies of formation at the temperature 303.15-k of 4 uranyl silicates - soddyite, uranophane, sodium boltwoodite, and sodium weeksite,” J. Chem. Therm.24, 359–376 (1992).
[CrossRef]

J. Env. Qual. (1)

R. N. Collins, T. Saito, N. Aoyagi, T. E. Payne, T. Kimura, and T. D. Waite, “Applications of Time-Resolved Laser Fluorescence Spectroscopy to the Environmental Biogeochemistry of Actinides,” J. Env. Qual.40, 731–741 (2011).
[CrossRef]

J. Env. Radioact. (1)

A. Meinrath, P. Schneider, and G. Meinrath, “Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany,” J. Env. Radioact.64, 175–193 (2003).
[CrossRef]

J. Inorg. Nucl. Chem. (2)

M. Moriyasu, Y. Yokoyama, and S. Ikeda, “Anion coordination to uranyl ion and the luminescence lifetime of the uranyl complex,” J. Inorg. Nucl. Chem.39, 2199–2203 (1977).
[CrossRef]

Y. Yokoyama, M. Moriyasu, and S. Ikeda, “Electron transfer mechanism in quenching of uranyl luminescence by halide ions,” J. Inorg. Nucl. Chem., 38, 1329–1333 (1979).
[CrossRef]

J. Lumin. (1)

M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. G. M. Miguel, A. P. Daramanyan, and I. V. Khudyakov, “On the uranyl ion luminescence in aqueous solutions,” J. Lumin.48–49, 522–526 (1991).
[CrossRef]

J. Mol. Sp. (1)

S. McGlynn and J. Smith, “Electronic structure, spectra, and magnetic properties of actinyl ions. 1. Uranyl ion,” J. Mol. Sp.6, 164–187 (1961).
[CrossRef]

J. Mol. Spectrosc. (1)

J. Bell and R. Biggers, “Absorption spectrum of uranyl ion in perchlorate media. I. Mathematical resolution of overlapping band structure and studies of environmental effects,” J. Mol. Spectrosc.18, 247–275 (1965).
[CrossRef]

J. Nucl. Mater. (2)

L. Johnson, C. Ferry, Ch. Poinssot, and P. Lovera, “Spent fuel radionuclide source-term model for assessing spent fuel performance in geological disposal,” J. Nucl. Mater.346, 56–65 (2005).
[CrossRef]

D. W. Shoesmith, “Fuel corrosion processes under waste disposal conditions,” J. Nucl. Mater.282, 1–31 (2000).
[CrossRef]

J. Phys. Chem. A (2)

R. G. Denning, “Electronic structure and bonding in actinyl ions and their analogs,” J. Phys. Chem. A111, 4125–4143 (2007).
[CrossRef] [PubMed]

R. Ghosh, J. A. Mondal, H. N. Ghosh, and D. K. Palit, “Ultrafast Dynamics of the Excited States of the Uranyl Ion in Solutions,” J. Phys. Chem. A114, 5263–5270 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

S. Tsushima, S. Nagasaki, S. Tanaka, and A. Suzuki, “A raman spectroscopic study of uranyl species adsorbed onto colloidal particles,” J. Phys. Chem. B102, 9029–9032 (1998).
[CrossRef]

J. Radioan. Chem. (1)

G. Marx and H. Bischoff, “Transport processes of actinides in electrolyte-solutions. 1. Determination of ionic mobilities of uranium in aqueous-solutions at 25° by radioisotope method,” J. Radioan. Chem.30, 567–581 (1976).
[CrossRef]

Photochem. Photobiol. Sciences (1)

S. Formosinho, H. Burrows, M. Miguel, M. Azenha, I. Saraiva, A. Ribeiro, I. Khudyakov, R. Gasanov, M. Bolte, and M. Sarakha, “Deactivation processes of the lowest excited state of [UO2(H2O)(5)](2+) in aqueous solution,” Photochem. Photobiol. Sciences2, 569–575 (2003).
[CrossRef]

Phys. Instrum. Ecolog. Med. Biolog. (1)

A. A. Banishev, D. V. Maslov, and V. V. Fadeev, “A Nanosecond Laser Fluorimeter,” Phys. Instrum. Ecolog. Med. Biolog.49, 430–434 (2006).

Phys. Rev. B (1)

A. Monguzzi, R. Tubino, and F. Meinardi, “Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer,” Phys. Rev. B77, 196112 (2008).

Phys. Rev. E (1)

S. Kudryashov and V. Zvorykin, “Microscale nanosecond laser-induced optical breakdown in water,” Phys. Rev. E78, 036404 (2008).
[CrossRef]

Radiochem. (1)

S. V. Lotnik, L. A. Khamidullina, and V. P. Kazakov, “Influence of temperature on the lifetime of electronically excited uranyl ion: I. Liquid and supercooled H2SO4 solutions” Radiochem.45, 550–554 (2003)
[CrossRef]

Radiochim. Acta (5)

I. Billard and K. Lutzenkirchen, “Equilibrium constants in aqueous lanthanide and actinide chemistry from time-resolved fluorescence spectroscopy: The role of ground and excited state reactions,” Radiochim. Acta91, 285–294 (2003).
[CrossRef]

G. Geipel, A. Brachmann, V. Brendler, G. Bernhard, and H. Nitsche, “Uranium(VI) sulfate complexation studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS),” Radiochim. Acta75, 199–204 (1996).

J. Fuger, “Thermodynamic properties of actinides aqueous species relevant to geochemical problems,” Radiochim. Acta58/59, 81–91 (1992).

H. Zanker, W. Richter, V. Brendler, and H. Nitsche, “Colloid-borne uranium anf other heavy metals in the water of mine drainage gallery,” Radiochim. Acta88, 619–624 (2000).
[CrossRef]

A. Kirishima, T. Kimura, O. Tochiyama, and Z. Yoshida, “Speciation study on complex formation of uranium(VI) with phosphate and uoride at high temperatures and pressures by time-resolved laser-induced uorescence spectroscopy,” Radiochim. Acta92, 889–896 (2004).
[CrossRef]

Russ. Chem. Bull. (1)

A. B. Yusov and V. P. Shilov, “Photochemistry of f-elements ions,” Russ. Chem. Bull.49, 1925–1953 (2000).
[CrossRef]

Science (1)

P. C. Burns, R. C. Ewing, and A. Navrotsky, “Nuclear fuel after a reactor accident,” Science335, 1184–1188 (2012).
[CrossRef] [PubMed]

Trends Anal. Chem. (1)

C. May, P. Worsfold, and M. Keith-Roach, “Analytical techniques for speciation analysis of aqueous long-lived radionuclides in environmental matrices,” Trends Anal. Chem.27, 160–168 (2008).
[CrossRef]

Zeitschr. Phys. (1)

S. I. Wawilow, “The lifetime of the excited molecules in the fluorescent aqueous solutions,” Zeitschr. Phys.53, 665–674 (1929).
[CrossRef]

Zeitschr. Phys. Chem. (1)

M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen,” Zeitschr. Phys. Chem.92, 129–168 (1917).

Other (5)

E. Jones, Tr. Oliphant, and P. Peterson, and others, “SciPy: Open source scientific tools for Python” (2001), http://www.scipy.org/ .

I. Puigdomenech, “Chemical Equilibrium Diagrams”, https://sites.google.com/site/chemdiagr/

I. Grenthe, Chemical Thermodynamics of Uranium, (Universal, 1992).

R. Guillaumont, T. Fanghänel, J. Fuger, J. Grenthe, V. Neck, D. Palmer, and M. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, (Elsevier Science Publishers B.V., 2003).

G. H. Dieke and A. B. F. Duncan, Spectroscopic properties of uranium compounds (McGraw-Hill Book Co, 1949).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The scheme of the signal collection block of laser fluorometer used for TRLFS measurements at different excitation intensities.

Fig. 2
Fig. 2

Fluorescent decay curves measured for different vertical displacements Δ between laser beam waist center and optical fiber and their approximations (solid lines, see text). Each curve is normalized to the signal at first point, measured at 0.5 μs delay with respect to the laser pulse.

Fig. 3
Fig. 3

The dependence of the parameter γξ0τ0 and the fluorescence intensity at the initial points of fluorescence decay curves normalized to RS signal A0/IRS on a waist position Δ.

Fig. 4
Fig. 4

The dependence of laser energy radiation transmitted through cuvette on vertical displacement between optical fiber and beam waist position Δ (see Fig. 1). The left and right to the vertical dashed line areas correspond to position of beam waist within and outside the sample, respectively.

Tables (1)

Tables Icon

Table 1 Parameters obtained by calculation using Eq. (12) and from approximation of kinetic curves with Eq. (10); S and I are laser beam cross-section area and intensity at detection volume. Relative errors of I, ξ0 and γ are approximately equal to relative errors of corresponding S values and are partly ommited.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I fl ( λ , t ) = i = 1 M A i S i ( λ ) exp ( t / τ i ) ,
d N i d t = N i τ i ,
r 2 0.5 = ( 6 D τ ) 0.5 700 nm ,
ν = 4 π D ˜ d Q ,
k = 1 τ + ν .
k eff = 1 τ + 4 π D r n ξ ,
d ξ d t = F ( t ) σ ( 1 ξ ) ξ τ γ ξ 2 ,
γ = 4 π D r n .
ξ ( t ) = ξ 0 exp ( t / τ ) 1 + γ ξ 0 τ ( 1 exp ( t / τ ) ) ,
I fl = Π k r n ξ ( t ) ,
d log I fl d t = d log ξ d t = d ξ d t 1 ξ = k eff ξ ξ = k eff .
ξ 0 = 1 exp ( T p F ( t ) d t ) = 1 exp ( σ E p S h ¯ ω ) ,

Metrics