Abstract

We demonstrate the resonant transfer of light from a planar waveguide to a nematic liquid-crystal microdroplet immersed in water. A wide spectrum of light from a supercontinuum laser source is coupled into a high-refractive-index polymer waveguide using a prism-film coupler. The waveguide is in contact with a water dispersion of droplets from the nematic liquid-crystal 5CB. The evanescent field of the light in the waveguide is resonantly coupled to the whispering-gallery mode resonances, sustained by 5 – 20μm-sized nematic liquid-crystal droplets, which are in close proximity to the waveguide. The resonant transfer of light is tuned by the temperature-induced shifting of the WGM resonances due to the temperature dependence of the refractive index of the nematic liquid crystal. The measurements are compared to the calculations of the coupled-mode theory.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
    [CrossRef]
  2. D. J. W. Klunder, E. Krioukov, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindical microresonators in Si3N4on SiO2technology,” Appl. Phys. B73, 603–608 (2001).
    [CrossRef]
  3. I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science313, 954–958 (2006).
    [CrossRef]
  4. A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun.4, 1489 (2013).
    [CrossRef] [PubMed]
  5. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics3, 595–600 (2009).
    [CrossRef]
  6. M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express19, 19836–19844 (2011).
    [CrossRef] [PubMed]
  7. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Optics Express18, 26995–27003 (2010).
    [CrossRef]
  8. D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Optics Express19, 2432–2439 (2011).
    [CrossRef] [PubMed]
  9. G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid micro-spheres: A novel multifunctional microphotonic device,” Adv. Mat.23, 5773–5778 (2011).
    [CrossRef]
  10. T. Araki and H. Tanaka, “Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line,” Phys. Rev. Lett.97, 127801 (2006).
    [CrossRef] [PubMed]
  11. M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Entangled Nematic Colloidal Dimers and Wires,” Phys. Rev. Lett.99, 247801 (2007).
    [CrossRef]
  12. U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science333, 62–65 (2011).
    [CrossRef] [PubMed]
  13. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley-Interscience, 2001).
    [CrossRef]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Science , 1998).
    [CrossRef]
  15. H. A. Haus, W. P. Haung, S. Kawakami, and N. A. Whitaker, “Coupled mode theory of optical waveguides,” J. Lightwave Technol.5, 16–23 (1987).
    [CrossRef]
  16. H. A. Haus and W. P. Haung, “Coupled-mode theory,” P. IEEE19, 1505–1518 (1991).
    [CrossRef]
  17. M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun.271, 124–131 (2007).
    [CrossRef]
  18. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
    [CrossRef]
  19. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt.12, 2901–2908 (1973).
    [CrossRef] [PubMed]
  20. P. K. Tien, “Light Waves in Thin Films and Integrated Optics,” Appl. Opt.10, 2395–2413 (1971).
    [CrossRef] [PubMed]
  21. V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transfer of light from a planar waveguide into a tunable nematic liquid crystal microcavity,” Proceedings of SPIE,8642, 86420E1 (2013).
    [CrossRef]
  22. M. Kleman and O. D. Lavrentovich, “Imperfections in focal conic domains: the role of dislocations,” Phil. Mag.86, 4439–4458 (2006).
    [CrossRef]
  23. H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep.351, 387–474 (2001).
    [CrossRef]
  24. S.-T. Wu and K.-C. Lim, “Absorption and scattering measurements of nematic liquid crystals,” Appl. Optics26, 1722–1727 (1987).
    [CrossRef]

2013

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun.4, 1489 (2013).
[CrossRef] [PubMed]

V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transfer of light from a planar waveguide into a tunable nematic liquid crystal microcavity,” Proceedings of SPIE,8642, 86420E1 (2013).
[CrossRef]

2012

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

2011

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express19, 19836–19844 (2011).
[CrossRef] [PubMed]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Optics Express19, 2432–2439 (2011).
[CrossRef] [PubMed]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid micro-spheres: A novel multifunctional microphotonic device,” Adv. Mat.23, 5773–5778 (2011).
[CrossRef]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science333, 62–65 (2011).
[CrossRef] [PubMed]

2010

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Optics Express18, 26995–27003 (2010).
[CrossRef]

2009

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics3, 595–600 (2009).
[CrossRef]

2007

M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Entangled Nematic Colloidal Dimers and Wires,” Phys. Rev. Lett.99, 247801 (2007).
[CrossRef]

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun.271, 124–131 (2007).
[CrossRef]

2006

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science313, 954–958 (2006).
[CrossRef]

T. Araki and H. Tanaka, “Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line,” Phys. Rev. Lett.97, 127801 (2006).
[CrossRef] [PubMed]

M. Kleman and O. D. Lavrentovich, “Imperfections in focal conic domains: the role of dislocations,” Phil. Mag.86, 4439–4458 (2006).
[CrossRef]

2003

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef]

2001

D. J. W. Klunder, E. Krioukov, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindical microresonators in Si3N4on SiO2technology,” Appl. Phys. B73, 603–608 (2001).
[CrossRef]

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep.351, 387–474 (2001).
[CrossRef]

1991

H. A. Haus and W. P. Haung, “Coupled-mode theory,” P. IEEE19, 1505–1518 (1991).
[CrossRef]

1987

S.-T. Wu and K.-C. Lim, “Absorption and scattering measurements of nematic liquid crystals,” Appl. Optics26, 1722–1727 (1987).
[CrossRef]

H. A. Haus, W. P. Haung, S. Kawakami, and N. A. Whitaker, “Coupled mode theory of optical waveguides,” J. Lightwave Technol.5, 16–23 (1987).
[CrossRef]

1973

1971

Araki, T.

T. Araki and H. Tanaka, “Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line,” Phys. Rev. Lett.97, 127801 (2006).
[CrossRef] [PubMed]

Babic, D.

M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Entangled Nematic Colloidal Dimers and Wires,” Phys. Rev. Lett.99, 247801 (2007).
[CrossRef]

Baets, R.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

Bandy, D. K.

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun.271, 124–131 (2007).
[CrossRef]

Bartolino, R.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid micro-spheres: A novel multifunctional microphotonic device,” Adv. Mat.23, 5773–5778 (2011).
[CrossRef]

Bienstman, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Science , 1998).
[CrossRef]

Bulthuis, H. F.

D. J. W. Klunder, E. Krioukov, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindical microresonators in Si3N4on SiO2technology,” Appl. Phys. B73, 603–608 (2001).
[CrossRef]

Cipparrone, G.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid micro-spheres: A novel multifunctional microphotonic device,” Adv. Mat.23, 5773–5778 (2011).
[CrossRef]

Claes, T.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

Coles, H. J.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Optics Express19, 2432–2439 (2011).
[CrossRef] [PubMed]

Copar, S.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science333, 62–65 (2011).
[CrossRef] [PubMed]

Dale, E.

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun.271, 124–131 (2007).
[CrossRef]

de Heyn, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

De Vos, K.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

Driessen, A.

D. J. W. Klunder, E. Krioukov, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindical microresonators in Si3N4on SiO2technology,” Appl. Phys. B73, 603–608 (2001).
[CrossRef]

Dumon, P.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

Gardiner, D. J.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Optics Express19, 2432–2439 (2011).
[CrossRef] [PubMed]

Hands, P. J. W.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Optics Express19, 2432–2439 (2011).
[CrossRef] [PubMed]

Haung, W. P.

H. A. Haus and W. P. Haung, “Coupled-mode theory,” P. IEEE19, 1505–1518 (1991).
[CrossRef]

H. A. Haus, W. P. Haung, S. Kawakami, and N. A. Whitaker, “Coupled mode theory of optical waveguides,” J. Lightwave Technol.5, 16–23 (1987).
[CrossRef]

Haus, H. A.

H. A. Haus and W. P. Haung, “Coupled-mode theory,” P. IEEE19, 1505–1518 (1991).
[CrossRef]

H. A. Haus, W. P. Haung, S. Kawakami, and N. A. Whitaker, “Coupled mode theory of optical waveguides,” J. Lightwave Technol.5, 16–23 (1987).
[CrossRef]

Hernandez, R. J.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid micro-spheres: A novel multifunctional microphotonic device,” Adv. Mat.23, 5773–5778 (2011).
[CrossRef]

Hoekstra, H. J. W. M.

D. J. W. Klunder, E. Krioukov, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindical microresonators in Si3N4on SiO2technology,” Appl. Phys. B73, 603–608 (2001).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Science , 1998).
[CrossRef]

Humar, M.

V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transfer of light from a planar waveguide into a tunable nematic liquid crystal microcavity,” Proceedings of SPIE,8642, 86420E1 (2013).
[CrossRef]

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express19, 19836–19844 (2011).
[CrossRef] [PubMed]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Optics Express18, 26995–27003 (2010).
[CrossRef]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics3, 595–600 (2009).
[CrossRef]

Humphrey, M. J.

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun.271, 124–131 (2007).
[CrossRef]

Jampani, V. S. R.

V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transfer of light from a planar waveguide into a tunable nematic liquid crystal microcavity,” Proceedings of SPIE,8642, 86420E1 (2013).
[CrossRef]

Kawakami, S.

H. A. Haus, W. P. Haung, S. Kawakami, and N. A. Whitaker, “Coupled mode theory of optical waveguides,” J. Lightwave Technol.5, 16–23 (1987).
[CrossRef]

Kawano, K.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley-Interscience, 2001).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef]

Kitoh, T.

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley-Interscience, 2001).
[CrossRef]

Kleman, M.

M. Kleman and O. D. Lavrentovich, “Imperfections in focal conic domains: the role of dislocations,” Phil. Mag.86, 4439–4458 (2006).
[CrossRef]

Klunder, D. J. W.

D. J. W. Klunder, E. Krioukov, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindical microresonators in Si3N4on SiO2technology,” Appl. Phys. B73, 603–608 (2001).
[CrossRef]

Krioukov, E.

D. J. W. Klunder, E. Krioukov, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindical microresonators in Si3N4on SiO2technology,” Appl. Phys. B73, 603–608 (2001).
[CrossRef]

Lavrentovich, O. D.

M. Kleman and O. D. Lavrentovich, “Imperfections in focal conic domains: the role of dislocations,” Phil. Mag.86, 4439–4458 (2006).
[CrossRef]

Lim, K.-C.

S.-T. Wu and K.-C. Lim, “Absorption and scattering measurements of nematic liquid crystals,” Appl. Optics26, 1722–1727 (1987).
[CrossRef]

Mazzulla, A.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid micro-spheres: A novel multifunctional microphotonic device,” Adv. Mat.23, 5773–5778 (2011).
[CrossRef]

Morris, S. M.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Optics Express19, 2432–2439 (2011).
[CrossRef] [PubMed]

Mowatt, C.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Optics Express19, 2432–2439 (2011).
[CrossRef] [PubMed]

Muševic, I.

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun.4, 1489 (2013).
[CrossRef] [PubMed]

V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transfer of light from a planar waveguide into a tunable nematic liquid crystal microcavity,” Proceedings of SPIE,8642, 86420E1 (2013).
[CrossRef]

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express19, 19836–19844 (2011).
[CrossRef] [PubMed]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science333, 62–65 (2011).
[CrossRef] [PubMed]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Optics Express18, 26995–27003 (2010).
[CrossRef]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics3, 595–600 (2009).
[CrossRef]

M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Entangled Nematic Colloidal Dimers and Wires,” Phys. Rev. Lett.99, 247801 (2007).
[CrossRef]

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science313, 954–958 (2006).
[CrossRef]

Nych, A.

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun.4, 1489 (2013).
[CrossRef] [PubMed]

Ognysta, U.

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun.4, 1489 (2013).
[CrossRef] [PubMed]

Osterman, N.

M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Entangled Nematic Colloidal Dimers and Wires,” Phys. Rev. Lett.99, 247801 (2007).
[CrossRef]

Otto, C.

D. J. W. Klunder, E. Krioukov, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindical microresonators in Si3N4on SiO2technology,” Appl. Phys. B73, 603–608 (2001).
[CrossRef]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics3, 595–600 (2009).
[CrossRef]

Pane, A.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid micro-spheres: A novel multifunctional microphotonic device,” Adv. Mat.23, 5773–5778 (2011).
[CrossRef]

Poberaj, I.

M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Entangled Nematic Colloidal Dimers and Wires,” Phys. Rev. Lett.99, 247801 (2007).
[CrossRef]

Ravnik, M.

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun.4, 1489 (2013).
[CrossRef] [PubMed]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science333, 62–65 (2011).
[CrossRef] [PubMed]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics3, 595–600 (2009).
[CrossRef]

M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Entangled Nematic Colloidal Dimers and Wires,” Phys. Rev. Lett.99, 247801 (2007).
[CrossRef]

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science313, 954–958 (2006).
[CrossRef]

Rosenberger, A. T.

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun.271, 124–131 (2007).
[CrossRef]

Rutledge, R.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Optics Express19, 2432–2439 (2011).
[CrossRef] [PubMed]

Selvaraja, S. K.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

Sengo, G.

D. J. W. Klunder, E. Krioukov, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindical microresonators in Si3N4on SiO2technology,” Appl. Phys. B73, 603–608 (2001).
[CrossRef]

Škarabot, M.

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun.4, 1489 (2013).
[CrossRef] [PubMed]

M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Entangled Nematic Colloidal Dimers and Wires,” Phys. Rev. Lett.99, 247801 (2007).
[CrossRef]

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science313, 954–958 (2006).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef]

Stark, H.

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep.351, 387–474 (2001).
[CrossRef]

Tanaka, H.

T. Araki and H. Tanaka, “Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line,” Phys. Rev. Lett.97, 127801 (2006).
[CrossRef] [PubMed]

Tien, P. K.

Tkalec, U.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science333, 62–65 (2011).
[CrossRef] [PubMed]

M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Entangled Nematic Colloidal Dimers and Wires,” Phys. Rev. Lett.99, 247801 (2007).
[CrossRef]

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science313, 954–958 (2006).
[CrossRef]

Torge, R.

Ulrich, R.

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef]

van der Veen, T.

D. J. W. Klunder, E. Krioukov, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindical microresonators in Si3N4on SiO2technology,” Appl. Phys. B73, 603–608 (2001).
[CrossRef]

van Thourhout, D.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

van Vaerenbergh, T.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

Whitaker, N. A.

H. A. Haus, W. P. Haung, S. Kawakami, and N. A. Whitaker, “Coupled mode theory of optical waveguides,” J. Lightwave Technol.5, 16–23 (1987).
[CrossRef]

Wilkinson, T. D.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Optics Express19, 2432–2439 (2011).
[CrossRef] [PubMed]

Wu, S.-T.

S.-T. Wu and K.-C. Lim, “Absorption and scattering measurements of nematic liquid crystals,” Appl. Optics26, 1722–1727 (1987).
[CrossRef]

Žumer, S.

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun.4, 1489 (2013).
[CrossRef] [PubMed]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science333, 62–65 (2011).
[CrossRef] [PubMed]

M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Entangled Nematic Colloidal Dimers and Wires,” Phys. Rev. Lett.99, 247801 (2007).
[CrossRef]

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science313, 954–958 (2006).
[CrossRef]

Adv. Mat.

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid micro-spheres: A novel multifunctional microphotonic device,” Adv. Mat.23, 5773–5778 (2011).
[CrossRef]

Appl. Opt.

Appl. Optics

S.-T. Wu and K.-C. Lim, “Absorption and scattering measurements of nematic liquid crystals,” Appl. Optics26, 1722–1727 (1987).
[CrossRef]

Appl. Phys. B

D. J. W. Klunder, E. Krioukov, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindical microresonators in Si3N4on SiO2technology,” Appl. Phys. B73, 603–608 (2001).
[CrossRef]

J. Lightwave Technol.

H. A. Haus, W. P. Haung, S. Kawakami, and N. A. Whitaker, “Coupled mode theory of optical waveguides,” J. Lightwave Technol.5, 16–23 (1987).
[CrossRef]

Laser Photonics Rev.

W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev.6, 47–73 (2012).
[CrossRef]

Nat. Commun.

A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, and I. Muševič, “Assembly and control of 3D nematic dipolar colloidal crystals,” Nat. Commun.4, 1489 (2013).
[CrossRef] [PubMed]

Nat. Photonics

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics3, 595–600 (2009).
[CrossRef]

Opt. Commun.

M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun.271, 124–131 (2007).
[CrossRef]

Opt. Express

Optics Express

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Optics Express18, 26995–27003 (2010).
[CrossRef]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Optics Express19, 2432–2439 (2011).
[CrossRef] [PubMed]

P. IEEE

H. A. Haus and W. P. Haung, “Coupled-mode theory,” P. IEEE19, 1505–1518 (1991).
[CrossRef]

Phil. Mag.

M. Kleman and O. D. Lavrentovich, “Imperfections in focal conic domains: the role of dislocations,” Phil. Mag.86, 4439–4458 (2006).
[CrossRef]

Phys. Rep.

H. Stark, “Physics of colloidal dispersions in nematic liquid crystals,” Phys. Rep.351, 387–474 (2001).
[CrossRef]

Phys. Rev. Lett.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003).
[CrossRef]

T. Araki and H. Tanaka, “Colloidal aggregation in a nematic liquid crystal: topological arrest of particles by a single-stroke disclination line,” Phys. Rev. Lett.97, 127801 (2006).
[CrossRef] [PubMed]

M. Ravnik, M. Škarabot, S. Žumer, U. Tkalec, I. Poberaj, D. Babič, N. Osterman, and I. Muševič, “Entangled Nematic Colloidal Dimers and Wires,” Phys. Rev. Lett.99, 247801 (2007).
[CrossRef]

Proceedings of SPIE

V. S. R. Jampani, M. Humar, and I. Muševič, “Resonant transfer of light from a planar waveguide into a tunable nematic liquid crystal microcavity,” Proceedings of SPIE,8642, 86420E1 (2013).
[CrossRef]

Science

I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, “Two-dimensional nematic colloidal crystals self-assembled by topological defects,” Science313, 954–958 (2006).
[CrossRef]

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, and I. Muševič, “Reconfigurable knots and links in chiral nematic colloids,” Science333, 62–65 (2011).
[CrossRef] [PubMed]

Other

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis (Wiley-Interscience, 2001).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Science , 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of the studied system and the plot of the real part of the electric field of light in the cavity and the slab waveguide. The mode in the 15μm-diameter cavity corresponds to the mode numbers n = 1 and l = m = 125, whereas the mode in the 2.5μm-thick waveguide corresponds to the mode number q = 3. (a) Cross-section in the plane parallel to the propagation of light that goes through the point of closest separation. (b) Cross-section in the plane perpendicular to the propagation of light.

Fig. 2
Fig. 2

Calculated coupling efficiency for NLC droplets similar to those used in the experiments, as a function of surface-to-surface separation. The coupling decreases approximately exponentially with increasing separation.

Fig. 3
Fig. 3

Calculated coupling efficiency when changing the refractive indices of both the slab waveguide ns and of the cavity nc, at a surface-to-surface separation of 50nm. The highest coupling of nearly 50% is achieved at small refractive indices of the slab, where a single-mode propagation is achieved. The refractive index of the cavity is optimum when the spatial phase matching of both light fields is a maximum. For higher indices a maximum coupling is achieved along the diagonal corresponding to the best possible phase matching. The circle shows the values of the indices of both materials (the polymer and the NLC), used in the experiment. At this point the expected coupling efficiency is ∼ 20%.

Fig. 4
Fig. 4

Schematic diagram of the experimental set-up. The beam from the supecontimuum laser is coupled into the slab waveguide using a high-index prism coupler. The light is propagating along the polymer film into a cell containing a water dispersion of liquid-crystal droplets. Part of the light is resonantly coupled from the waveguide into the WGMs in the NLC droplets. The light emitted from the droplets is captured by a microscope objective and sent to the camera or spectrometer.

Fig. 5
Fig. 5

Droplets of 5CB liquid-crystal in the SDS solution after they settled at the bottom of the cell, i.e., onto the polymer waveguide surface. (a) A micrograph of a single droplet with a clearly visible radial hedgehog point defect in the center. (b) The same droplet under crossed polarizers. The black cross reveals the radial configuration of the director in the droplet. (c) When light is sent through the polymer waveguide, two bright spots can be observed on each droplet. They are due to the leaking of light that is resonantly circulating inside the NLC droplet. This leakage is manifested in the two bright spots at the circumference of the droplet, aligned along the direction of propagation of light in the waveguide. Weak background light is used to see the droplets. (d) False color representation of the light intensity emitted from an individual droplet, optically coupled to the waveguide.

Fig. 6
Fig. 6

(a) Spectrum of light from a 6μm diameter NLC droplet reveals distinct equally separated peaks corresponding to WGMs in the droplet. The mode numbers and positions of the calculated modes are shown in red. The inset shows that the spectrum of light transmitted through the waveguide and measured at the end of the waveguide does not contain any sharp spectral lines. (b) Spectral lines corresponding to WGMs in a larger droplet with a diameter of 14.6μm are more densely distributed.

Fig. 7
Fig. 7

Spectrum of light emitted from the same droplet as in Figure 6b as a function of temperature. Two sets of modes correspond to the TM (decreasing resonant wavelengths with increasing temperature) and TE polarizations (increasing resonant wavelengths) of the WGMs in the birefringent NLC microcavity. At 311K the birefringent nematic phase melts into the isotropic liquid phase. The two solid lines represent the modes TM 112 1 and TE 102 1, and are just guides to the eye.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η s c ( c s ) ( z ) = ω ε 0 4 N s N c cavity ( slab ) ( n c ( s ) 2 n cl 2 ) E c E s d x d y .
κ = η s c ( z ) η c s ( z ) exp [ i ( β s β c , eff ( z ) ) z ] d z .

Metrics