Abstract

We report on a new technique to produce high power sub-picosecond pulses from a fiber amplifier. We use parabolic pulse shaping of 27ps transform-limited pulses in order to control nonlinear effects in the fiber amplifier. 63MW, 780fs pulses with 25W average power were obtained, and ways to scale the technique to higher peak powers were identified.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830W average output power,” Opt. Lett.35, 94–96 (2010).
    [CrossRef] [PubMed]
  2. F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26mJ, 130W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37, 1073–1075 (2012).
    [CrossRef] [PubMed]
  3. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. H¨adrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8GW peak power,” Opt. Express19, 255–260 (2011).
    [CrossRef] [PubMed]
  4. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36, 689–691 (2011).
    [CrossRef] [PubMed]
  5. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56, 219–221 (1985).
    [CrossRef]
  6. M. D. Perry, T. Ditmire, and B. C. Stuart, “Self-phase modulation in chirped-pulse amplification,” Opt. Lett.19, 2149–2151 (1994).
    [CrossRef] [PubMed]
  7. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 3495–3497 (2007).
    [CrossRef] [PubMed]
  8. F. Röser, D. Schimpf, O. Schmidt, B. Orta, K. Rademaker, J. Limpert, and A. Tünnermann, “90W average power 100μ J energy femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 2230–2232 (2007).
    [CrossRef]
  9. L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, “High energy femtosecond Yb cubicon fiber amplifier,” Opt. Express13, 4717–4722 (2005).
    [CrossRef] [PubMed]
  10. S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express13, 2149–2151 (2005).
    [CrossRef]
  11. L. Kuznetsova and F. W. Wise, “Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification,” Opt. Lett.32, 2671–2673 (2007).
    [CrossRef] [PubMed]
  12. Y. Zaouter, J. Boullet, E. Mottay, and E. Cormier, “Transform-limited 100 μ J, 340MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher-compressor,” Opt. Lett.33, 2149–2151 (2008).
    [CrossRef]
  13. F. He, H. S. S. Hung, J. H. V. Price, N. K. Daga, N. Naz, J. Prawiharjo, D. C. Hanna, D. P. Shepherd, D. J. Richardson, J. W. Dawson, C. W. Siders, and C. P. J. Barty, “High energy femtosecond fiber chirped pulse amplification system with adaptive phase control,” Opt. Express16, 5813–5821 (2008).
    [CrossRef] [PubMed]
  14. D. Nguyen, M. U. Piracha, and P. J. Delfyett, “Transform-limited pulses for chirped-pulse amplification systems utilizing an active feedback pulse shaping technique enabling five time increase in peak power,” Opt. Lett.23, 4913–4915 (2012).
    [CrossRef]
  15. D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett.34, 3788–3790 (2009).
    [CrossRef] [PubMed]
  16. D. B. S. Soh, J. Nilsson, and A. B. Grudinin, “Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. II. Finite gain-bandwidth effect,” J. Opt. Soc. Am. B23, 10–19 (2006).
    [CrossRef]
  17. J. Saby, D. Sangla, S. Pierrot, P. Deslandes, and F. Salin, “High power industrial picosecond laser from IR to UV,” Proc. SPIE8601 (2013).
  18. T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, “Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems,” J. Opt. Soc. Am. B24, 1809–1814 (2007).
    [CrossRef]
  19. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63fs 4.1MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett.32, 2520–2522 (2007).
    [CrossRef] [PubMed]
  20. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett.84, 6010–6013 (2000).
    [CrossRef] [PubMed]
  21. S. Wang, B. Liu, C. Gu, Y. Song, C. Qian, M. Hu, L. Chai, and C. Wang, “Self-similar evolution in a short fiber amplifier through nonlinear pulse preshaping,” Opt. Lett.38, 296–298 (2013).
    [CrossRef] [PubMed]
  22. C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express15, 852–864 (2007).
    [CrossRef] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  24. H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear Picosecond-Pulse Propagation through Optical Fibers with Positive Group Velocity Dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
    [CrossRef]
  25. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10, 457–459 (1985).
    [CrossRef] [PubMed]
  26. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B25, 1938–1948 (2008).
    [CrossRef]
  27. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B10, 1185–1190 (1993).
    [CrossRef]
  28. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B1, 139–149 (1984).
    [CrossRef]
  29. F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20, 3997–4008 (2012).
    [CrossRef] [PubMed]
  30. C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express14, 3161–3170 (2006).
    [CrossRef] [PubMed]
  31. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A10, 1101–1111 (1993).
    [CrossRef]
  32. http://frog.gatech.edu .

2013 (2)

J. Saby, D. Sangla, S. Pierrot, P. Deslandes, and F. Salin, “High power industrial picosecond laser from IR to UV,” Proc. SPIE8601 (2013).

S. Wang, B. Liu, C. Gu, Y. Song, C. Qian, M. Hu, L. Chai, and C. Wang, “Self-similar evolution in a short fiber amplifier through nonlinear pulse preshaping,” Opt. Lett.38, 296–298 (2013).
[CrossRef] [PubMed]

2012 (3)

2011 (2)

2010 (1)

2009 (1)

2008 (3)

2007 (6)

2006 (2)

2005 (2)

L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, “High energy femtosecond Yb cubicon fiber amplifier,” Opt. Express13, 4717–4722 (2005).
[CrossRef] [PubMed]

S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express13, 2149–2151 (2005).
[CrossRef]

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett.84, 6010–6013 (2000).
[CrossRef] [PubMed]

1994 (1)

1993 (2)

1985 (2)

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10, 457–459 (1985).
[CrossRef] [PubMed]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56, 219–221 (1985).
[CrossRef]

1984 (1)

1981 (1)

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear Picosecond-Pulse Propagation through Optical Fibers with Positive Group Velocity Dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Andersen, T. V.

Anderson, D.

Balant, A. C.

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear Picosecond-Pulse Propagation through Optical Fibers with Positive Group Velocity Dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
[CrossRef]

Barty, C. P. J.

Boullet, J.

Carstens, H.

Chai, L.

Cho, G. C.

Chong, A.

S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express13, 2149–2151 (2005).
[CrossRef]

Cormier, E.

Daga, N. K.

Dawson, J. W.

Delfyett, P. J.

D. Nguyen, M. U. Piracha, and P. J. Delfyett, “Transform-limited pulses for chirped-pulse amplification systems utilizing an active feedback pulse shaping technique enabling five time increase in peak power,” Opt. Lett.23, 4913–4915 (2012).
[CrossRef]

Desaix, M.

Deslandes, P.

J. Saby, D. Sangla, S. Pierrot, P. Deslandes, and F. Salin, “High power industrial picosecond laser from IR to UV,” Proc. SPIE8601 (2013).

Ditmire, T.

Druon, F.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett.84, 6010–6013 (2000).
[CrossRef] [PubMed]

Eidam, T.

Fermann, M. E.

L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, “High energy femtosecond Yb cubicon fiber amplifier,” Opt. Express13, 4717–4722 (2005).
[CrossRef] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett.84, 6010–6013 (2000).
[CrossRef] [PubMed]

Finot, C.

Gabler, T.

Georges, P.

Grischkowsky, D.

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear Picosecond-Pulse Propagation through Optical Fibers with Positive Group Velocity Dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
[CrossRef]

Grudinin, A. B.

Gu, C.

H¨adrich, S.

Hanf, S.

Hanna, D. C.

Hanna, M.

Hartl, I.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett.84, 6010–6013 (2000).
[CrossRef] [PubMed]

He, F.

Hu, M.

Hung, H. S. S.

Imeshev, G.

Jansen, F.

Jauregui, C.

Johnson, A. M.

Kane, D. J.

Karlsson, M.

Kibler, B.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett.84, 6010–6013 (2000).
[CrossRef] [PubMed]

Kuznetsova, L.

L. Kuznetsova and F. W. Wise, “Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification,” Opt. Lett.32, 2671–2673 (2007).
[CrossRef] [PubMed]

S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express13, 2149–2151 (2005).
[CrossRef]

Liem, A.

Limpert, J.

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20, 3997–4008 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26mJ, 130W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37, 1073–1075 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36, 689–691 (2011).
[CrossRef] [PubMed]

T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. H¨adrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8GW peak power,” Opt. Express19, 255–260 (2011).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830W average output power,” Opt. Lett.35, 94–96 (2010).
[CrossRef] [PubMed]

D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett.34, 3788–3790 (2009).
[CrossRef] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 3495–3497 (2007).
[CrossRef] [PubMed]

T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, “Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems,” J. Opt. Soc. Am. B24, 1809–1814 (2007).
[CrossRef]

F. Röser, D. Schimpf, O. Schmidt, B. Orta, K. Rademaker, J. Limpert, and A. Tünnermann, “90W average power 100μ J energy femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 2230–2232 (2007).
[CrossRef]

Lisak, M.

Liu, B.

Liu, Z.

Mottay, E.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56, 219–221 (1985).
[CrossRef]

Müller, D.

Nakatsuka, H.

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear Picosecond-Pulse Propagation through Optical Fibers with Positive Group Velocity Dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
[CrossRef]

Naz, N.

Nguyen, D.

D. Nguyen, M. U. Piracha, and P. J. Delfyett, “Transform-limited pulses for chirped-pulse amplification systems utilizing an active feedback pulse shaping technique enabling five time increase in peak power,” Opt. Lett.23, 4913–4915 (2012).
[CrossRef]

Nilsson, J.

Orta, B.

Otto, H.-J.

Papadopoulos, D. N.

Parmigiani, F.

Perry, M. D.

Petropoulos, P.

Pierrot, S.

J. Saby, D. Sangla, S. Pierrot, P. Deslandes, and F. Salin, “High power industrial picosecond laser from IR to UV,” Proc. SPIE8601 (2013).

Piracha, M. U.

D. Nguyen, M. U. Piracha, and P. J. Delfyett, “Transform-limited pulses for chirped-pulse amplification systems utilizing an active feedback pulse shaping technique enabling five time increase in peak power,” Opt. Lett.23, 4913–4915 (2012).
[CrossRef]

Prawiharjo, J.

Price, J. H. V.

Provost, L.

Qian, C.

Quiroga-Teixeiro, M. L.

Rademaker, K.

Richardson, D. J.

Röser, F.

Rothhardt, J.

Saby, J.

J. Saby, D. Sangla, S. Pierrot, P. Deslandes, and F. Salin, “High power industrial picosecond laser from IR to UV,” Proc. SPIE8601 (2013).

Salin, F.

J. Saby, D. Sangla, S. Pierrot, P. Deslandes, and F. Salin, “High power industrial picosecond laser from IR to UV,” Proc. SPIE8601 (2013).

Sangla, D.

J. Saby, D. Sangla, S. Pierrot, P. Deslandes, and F. Salin, “High power industrial picosecond laser from IR to UV,” Proc. SPIE8601 (2013).

Schimpf, D.

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

Seise, E.

Shah, L.

Shank, C. V.

Shepherd, D. P.

Siders, C. W.

Soh, D. B. S.

Song, Y.

Steinmetz, A.

Stolen, R. H.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56, 219–221 (1985).
[CrossRef]

Stuart, B. C.

Stutzki, F.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett.84, 6010–6013 (2000).
[CrossRef] [PubMed]

Tomlinson, W. J.

Trebino, R.

Tünnermann, A.

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20, 3997–4008 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26mJ, 130W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37, 1073–1075 (2012).
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36, 689–691 (2011).
[CrossRef] [PubMed]

T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. H¨adrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8GW peak power,” Opt. Express19, 255–260 (2011).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830W average output power,” Opt. Lett.35, 94–96 (2010).
[CrossRef] [PubMed]

D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett.34, 3788–3790 (2009).
[CrossRef] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 3495–3497 (2007).
[CrossRef] [PubMed]

T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, “Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems,” J. Opt. Soc. Am. B24, 1809–1814 (2007).
[CrossRef]

F. Röser, D. Schimpf, O. Schmidt, B. Orta, K. Rademaker, J. Limpert, and A. Tünnermann, “90W average power 100μ J energy femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 2230–2232 (2007).
[CrossRef]

Wabnitz, S.

Wang, C.

Wang, S.

Wirth, C.

Wise, F. W.

L. Kuznetsova and F. W. Wise, “Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification,” Opt. Lett.32, 2671–2673 (2007).
[CrossRef] [PubMed]

S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express13, 2149–2151 (2005).
[CrossRef]

Zaouter, Y.

Zhou, S.

S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express13, 2149–2151 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (5)

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56, 219–221 (1985).
[CrossRef]

Opt. Express (7)

S. Zhou, L. Kuznetsova, A. Chong, and F. W. Wise, “Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers,” Opt. Express13, 2149–2151 (2005).
[CrossRef]

L. Shah, Z. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, “High energy femtosecond Yb cubicon fiber amplifier,” Opt. Express13, 4717–4722 (2005).
[CrossRef] [PubMed]

T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. H¨adrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber chirped-pulse amplification system emitting 3.8GW peak power,” Opt. Express19, 255–260 (2011).
[CrossRef] [PubMed]

C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express14, 3161–3170 (2006).
[CrossRef] [PubMed]

C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express15, 852–864 (2007).
[CrossRef] [PubMed]

F. He, H. S. S. Hung, J. H. V. Price, N. K. Daga, N. Naz, J. Prawiharjo, D. C. Hanna, D. P. Shepherd, D. J. Richardson, J. W. Dawson, C. W. Siders, and C. P. J. Barty, “High energy femtosecond fiber chirped pulse amplification system with adaptive phase control,” Opt. Express16, 5813–5821 (2008).
[CrossRef] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express20, 3997–4008 (2012).
[CrossRef] [PubMed]

Opt. Lett. (13)

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26mJ, 130W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett.37, 1073–1075 (2012).
[CrossRef] [PubMed]

S. Wang, B. Liu, C. Gu, Y. Song, C. Qian, M. Hu, L. Chai, and C. Wang, “Self-similar evolution in a short fiber amplifier through nonlinear pulse preshaping,” Opt. Lett.38, 296–298 (2013).
[CrossRef] [PubMed]

Y. Zaouter, J. Boullet, E. Mottay, and E. Cormier, “Transform-limited 100 μ J, 340MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher-compressor,” Opt. Lett.33, 2149–2151 (2008).
[CrossRef]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36, 689–691 (2011).
[CrossRef] [PubMed]

D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett.34, 3788–3790 (2009).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830W average output power,” Opt. Lett.35, 94–96 (2010).
[CrossRef] [PubMed]

F. Röser, D. Schimpf, O. Schmidt, B. Orta, K. Rademaker, J. Limpert, and A. Tünnermann, “90W average power 100μ J energy femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 2230–2232 (2007).
[CrossRef]

D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63fs 4.1MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett.32, 2520–2522 (2007).
[CrossRef] [PubMed]

L. Kuznetsova and F. W. Wise, “Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification,” Opt. Lett.32, 2671–2673 (2007).
[CrossRef] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32, 3495–3497 (2007).
[CrossRef] [PubMed]

D. Nguyen, M. U. Piracha, and P. J. Delfyett, “Transform-limited pulses for chirped-pulse amplification systems utilizing an active feedback pulse shaping technique enabling five time increase in peak power,” Opt. Lett.23, 4913–4915 (2012).
[CrossRef]

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10, 457–459 (1985).
[CrossRef] [PubMed]

M. D. Perry, T. Ditmire, and B. C. Stuart, “Self-phase modulation in chirped-pulse amplification,” Opt. Lett.19, 2149–2151 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear Picosecond-Pulse Propagation through Optical Fibers with Positive Group Velocity Dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett.84, 6010–6013 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Saby, D. Sangla, S. Pierrot, P. Deslandes, and F. Salin, “High power industrial picosecond laser from IR to UV,” Proc. SPIE8601 (2013).

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

http://frog.gatech.edu .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Simulated temporal pulse profile (a) and spectrum (b) evolution for a N=64 27ps gaussian shaped pulse propagating in a segment of passive fiber.

Fig. 2
Fig. 2

Simulated temporal intensity profile (a) and spectrum (b) of N=64 pulses with 18π B integral, and initial pulse duration >5ps after propagation in a segment of passive fiber.

Fig. 3
Fig. 3

Simulated compressed pulse intensity profile obtained using 1800 l.mm−1 gratings at the output of a segment of passive fiber, for N=64 pulses with 18π B integral, and initial pulse duration τp=5ps (a) τp=27ps (b).

Fig. 4
Fig. 4

Experimental amplifier set-up comprising a temporal pulse shaping stage.

Fig. 5
Fig. 5

Cross-correlation (a) and spectrum (b) measurements of N=64, 27ps gaussian shaped pulses after propagation through 200m of passive fiber.

Fig. 6
Fig. 6

Output energy and average power at 500kHz as a function of pump power in the second amplifier stage.

Fig. 7
Fig. 7

Cross-correlation (a) and spectrum (b) measurements at the output of the amplifier.

Fig. 8
Fig. 8

Autocorrelation traces for two output energies : (a) 4μJ (b) 60μJ.

Fig. 9
Fig. 9

Autocorrelation (a) and spectrum (b) measurements of 40μJ and 27ps gaussian shaped pulses directly amplified in two LPF amplifier stages.

Fig. 10
Fig. 10

Simulated PG FROG traces (a) 1.3nJ, 27ps TL pulses after propagation through 200m of passive fiber, and amplification to 60μJ (22π B integral). (b) 27ps gaussian pulses directly amplified to 40μJ (17π B integral).

Fig. 11
Fig. 11

Compressed pulse autocorrelations comparison for pulses amplified in rod-type fibers with (black line) and without (red line) initial temporal pulse shaping stage. (a) Linear scale (b) Logarithmic scale.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ N L ( t ) n 2 I ( t ) and ω N L ( t ) n 2 d I ( t ) d t
A z + i β 2 2 2 A T 2 β 3 6 3 A T 3 + α 2 A = i γ | A | 2 A
N = L D L N L , where L D = T 0 2 β 2 and L N L = 1 γ P c .

Metrics