Abstract

We propose an effective-medium theory (EMT) for the surface charged dielectric nanoparticles (CDNPs) in the long wavelength limit, in which a homogenous CDNP is demonstrated to be equivalent to a conventional absorbing neutral particle of the same size but with different constitutive parameters (effective permittivity εe and effective permeability μe). It is found that while the surface charge induces negligible change of magnetic permeability in particle, it gives rise to a significant change of electric permittivity. The change in permittivity depends on the charge, the particle size, and the working frequency but is independent of the constituent material. In infrared frequencies, both the real and imaginary parts of the particle permittivity may be changed considerably by surface charging. At higher frequency, the surface charge can lead to a remarkable decrease in the real part of the permittivity while keeping its imaginary part nearly unchanged. Therefore, based on EMT we can tailor the optical properties of CDNPs by optimizing their parameters, allowing for many exotic phenomena, such as vanishing scattering efficiency, great enhancement of light absorption efficiency, and surface charge induced surface plasmon resonance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Mendis, “Progress in the study of dusty plasmas,” Plasma Sources Sci. Technol.11, A219–A228 (2002).
    [CrossRef]
  2. O. Ishihara, “Complex plasma: dusts in plasma,” J. Phys. D40, R121–R147 (2007).
    [CrossRef]
  3. I. Mann, “Interplanetary medium - A dusty plasma,” Adv. Space Res.41160–167 (2008).
    [CrossRef]
  4. R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
    [CrossRef] [PubMed]
  5. M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, and D. A. Weitz, “Electric-field-induced capillary attraction between like-charged particles at liquid interfaces,” Nature420, 299–301 (2002).
    [CrossRef] [PubMed]
  6. M. Megens and J. Aizenberg, “Like-charged particles at liquid interfaces,” Nature424, 1014 (2003).
    [CrossRef]
  7. H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. of Electromagn. Waves and Appl.24, 2037–2047 (2010).
  8. A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111, 2550–2557 (2010).
    [CrossRef]
  9. E. Rosenkrantz and S. Arnon, “Enhanced absorption of light by charged nanoparticles,” Opt. Lett.35, 1178–1180 (2010).
    [CrossRef] [PubMed]
  10. E. Rosenkrantz and S. Arnon, “Resonance frequencies of electrically charged nanoparticles,” IEEE Photonics Journal3, 82–88 (2011).
    [CrossRef]
  11. X. C. Li, L. Xie, and X. J. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transf.113, 251–258 (2011).
    [CrossRef]
  12. G. Mie, “Beiträge zur Optik träber Medien speziell kolloidaler Metaläsungen,” Ann. Phys.25, 377–445 (1908).
    [CrossRef]
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).
  14. C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys.55, 1930–1935 (1977).
    [CrossRef]
  15. J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transf.106, 170–183 (2007).
    [CrossRef]
  16. J. Klačka and M. Kocifaj, “On the scattering of electromagnetic waves by a charged sphere,” Prog. Electromagn. Res.109, 17–35 (2010).
    [CrossRef]
  17. R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109, 243903 (2012).
    [CrossRef]
  18. Y. Wu, J. S. Li, Z. Q. Zhang, and C. T Chan, “Effective medium theory for magnetodielectric composites: Beeyond the long-wavelength limit,” Phys. Rev. B74, 085111 (2006).
    [CrossRef]
  19. S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett.101, 157407 (2008).
    [CrossRef] [PubMed]
  20. J. F. Jin, S.Y. Liu, Z. F. Lin, and S. T. Chui, “Effective-medium theory for anistropic magnetic metamaterials,” Phys. Rev. B80, 115101 (2009).
    [CrossRef]
  21. Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plasmonics5, 251–258 (2010).
    [CrossRef]
  22. R. A. Shelby, D. R. Smith, S. Shultz, and S. C. Nemat-Nasser, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett.78, 489–491 (2001).
    [CrossRef]
  23. A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express14, 1557–1567 (2006).
    [CrossRef] [PubMed]
  24. A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express15, 3318–3332 (2007).
    [CrossRef] [PubMed]
  25. A. Alù and N. Engheta, “Multifrequency optical cloaking with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
    [CrossRef]

2012 (1)

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109, 243903 (2012).
[CrossRef]

2011 (2)

E. Rosenkrantz and S. Arnon, “Resonance frequencies of electrically charged nanoparticles,” IEEE Photonics Journal3, 82–88 (2011).
[CrossRef]

X. C. Li, L. Xie, and X. J. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transf.113, 251–258 (2011).
[CrossRef]

2010 (5)

H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. of Electromagn. Waves and Appl.24, 2037–2047 (2010).

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111, 2550–2557 (2010).
[CrossRef]

J. Klačka and M. Kocifaj, “On the scattering of electromagnetic waves by a charged sphere,” Prog. Electromagn. Res.109, 17–35 (2010).
[CrossRef]

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plasmonics5, 251–258 (2010).
[CrossRef]

E. Rosenkrantz and S. Arnon, “Enhanced absorption of light by charged nanoparticles,” Opt. Lett.35, 1178–1180 (2010).
[CrossRef] [PubMed]

2009 (1)

J. F. Jin, S.Y. Liu, Z. F. Lin, and S. T. Chui, “Effective-medium theory for anistropic magnetic metamaterials,” Phys. Rev. B80, 115101 (2009).
[CrossRef]

2008 (3)

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett.101, 157407 (2008).
[CrossRef] [PubMed]

I. Mann, “Interplanetary medium - A dusty plasma,” Adv. Space Res.41160–167 (2008).
[CrossRef]

A. Alù and N. Engheta, “Multifrequency optical cloaking with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
[CrossRef]

2007 (3)

A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express15, 3318–3332 (2007).
[CrossRef] [PubMed]

O. Ishihara, “Complex plasma: dusts in plasma,” J. Phys. D40, R121–R147 (2007).
[CrossRef]

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transf.106, 170–183 (2007).
[CrossRef]

2006 (2)

Y. Wu, J. S. Li, Z. Q. Zhang, and C. T Chan, “Effective medium theory for magnetodielectric composites: Beeyond the long-wavelength limit,” Phys. Rev. B74, 085111 (2006).
[CrossRef]

A. Alù, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express14, 1557–1567 (2006).
[CrossRef] [PubMed]

2003 (1)

M. Megens and J. Aizenberg, “Like-charged particles at liquid interfaces,” Nature424, 1014 (2003).
[CrossRef]

2002 (3)

D. A. Mendis, “Progress in the study of dusty plasmas,” Plasma Sources Sci. Technol.11, A219–A228 (2002).
[CrossRef]

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, and D. A. Weitz, “Electric-field-induced capillary attraction between like-charged particles at liquid interfaces,” Nature420, 299–301 (2002).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, S. Shultz, and S. C. Nemat-Nasser, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett.78, 489–491 (2001).
[CrossRef]

1977 (1)

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys.55, 1930–1935 (1977).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur Optik träber Medien speziell kolloidaler Metaläsungen,” Ann. Phys.25, 377–445 (1908).
[CrossRef]

Aizenberg, J.

M. Megens and J. Aizenberg, “Like-charged particles at liquid interfaces,” Nature424, 1014 (2003).
[CrossRef]

Alù, A.

Annesley, J.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Arnon, S.

E. Rosenkrantz and S. Arnon, “Resonance frequencies of electrically charged nanoparticles,” IEEE Photonics Journal3, 82–88 (2011).
[CrossRef]

E. Rosenkrantz and S. Arnon, “Enhanced absorption of light by charged nanoparticles,” Opt. Lett.35, 1178–1180 (2010).
[CrossRef] [PubMed]

Aveyard, R.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Bai, L.

H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. of Electromagn. Waves and Appl.24, 2037–2047 (2010).

Bausch, A. R.

M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, and D. A. Weitz, “Electric-field-induced capillary attraction between like-charged particles at liquid interfaces,” Nature420, 299–301 (2002).
[CrossRef] [PubMed]

Binks, B. P.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Bohren, C. F.

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys.55, 1930–1935 (1977).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).

Botchway, S. W.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Brenner, M. P.

M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, and D. A. Weitz, “Electric-field-induced capillary attraction between like-charged particles at liquid interfaces,” Nature420, 299–301 (2002).
[CrossRef] [PubMed]

Bronold, F. X.

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109, 243903 (2012).
[CrossRef]

Burgess, A.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Chan, C. T

Y. Wu, J. S. Li, Z. Q. Zhang, and C. T Chan, “Effective medium theory for magnetodielectric composites: Beeyond the long-wavelength limit,” Phys. Rev. B74, 085111 (2006).
[CrossRef]

Chan, C. T.

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett.101, 157407 (2008).
[CrossRef] [PubMed]

Chen, W. K.

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett.101, 157407 (2008).
[CrossRef] [PubMed]

Chien, H. T.

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111, 2550–2557 (2010).
[CrossRef]

Chui, S. T.

J. F. Jin, S.Y. Liu, Z. F. Lin, and S. T. Chui, “Effective-medium theory for anistropic magnetic metamaterials,” Phys. Rev. B80, 115101 (2009).
[CrossRef]

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett.101, 157407 (2008).
[CrossRef] [PubMed]

Clint, J. H.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Dinsmore, A. D.

M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, and D. A. Weitz, “Electric-field-induced capillary attraction between like-charged particles at liquid interfaces,” Nature420, 299–301 (2002).
[CrossRef] [PubMed]

Du, J. J.

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett.101, 157407 (2008).
[CrossRef] [PubMed]

Engheta, N.

Fehske, H.

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109, 243903 (2012).
[CrossRef]

Fletcher, P. D. I.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Gao, L.

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plasmonics5, 251–258 (2010).
[CrossRef]

Gay, C.

M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, and D. A. Weitz, “Electric-field-induced capillary attraction between like-charged particles at liquid interfaces,” Nature420, 299–301 (2002).
[CrossRef] [PubMed]

Gopalsami, N.

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111, 2550–2557 (2010).
[CrossRef]

Heifetz, A.

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111, 2550–2557 (2010).
[CrossRef]

Heinisch, R. L.

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109, 243903 (2012).
[CrossRef]

Horozov, T. S.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Hsu, M. F.

M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, and D. A. Weitz, “Electric-field-induced capillary attraction between like-charged particles at liquid interfaces,” Nature420, 299–301 (2002).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).

Hunt, A. J.

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys.55, 1930–1935 (1977).
[CrossRef]

Ishihara, O.

O. Ishihara, “Complex plasma: dusts in plasma,” J. Phys. D40, R121–R147 (2007).
[CrossRef]

Jin, J. F.

J. F. Jin, S.Y. Liu, Z. F. Lin, and S. T. Chui, “Effective-medium theory for anistropic magnetic metamaterials,” Phys. Rev. B80, 115101 (2009).
[CrossRef]

Klacka, J.

J. Klačka and M. Kocifaj, “On the scattering of electromagnetic waves by a charged sphere,” Prog. Electromagn. Res.109, 17–35 (2010).
[CrossRef]

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transf.106, 170–183 (2007).
[CrossRef]

Kocifaj, M.

J. Klačka and M. Kocifaj, “On the scattering of electromagnetic waves by a charged sphere,” Prog. Electromagn. Res.109, 17–35 (2010).
[CrossRef]

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transf.106, 170–183 (2007).
[CrossRef]

Li, H. Y.

H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. of Electromagn. Waves and Appl.24, 2037–2047 (2010).

Li, J. S.

Y. Wu, J. S. Li, Z. Q. Zhang, and C. T Chan, “Effective medium theory for magnetodielectric composites: Beeyond the long-wavelength limit,” Phys. Rev. B74, 085111 (2006).
[CrossRef]

Li, X. C.

X. C. Li, L. Xie, and X. J. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transf.113, 251–258 (2011).
[CrossRef]

Liao, S.

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111, 2550–2557 (2010).
[CrossRef]

Lin, Z. F.

J. F. Jin, S.Y. Liu, Z. F. Lin, and S. T. Chui, “Effective-medium theory for anistropic magnetic metamaterials,” Phys. Rev. B80, 115101 (2009).
[CrossRef]

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett.101, 157407 (2008).
[CrossRef] [PubMed]

Liu, S. Y.

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett.101, 157407 (2008).
[CrossRef] [PubMed]

Liu, S.Y.

J. F. Jin, S.Y. Liu, Z. F. Lin, and S. T. Chui, “Effective-medium theory for anistropic magnetic metamaterials,” Phys. Rev. B80, 115101 (2009).
[CrossRef]

Mann, I.

I. Mann, “Interplanetary medium - A dusty plasma,” Adv. Space Res.41160–167 (2008).
[CrossRef]

Megens, M.

M. Megens and J. Aizenberg, “Like-charged particles at liquid interfaces,” Nature424, 1014 (2003).
[CrossRef]

Mendis, D. A.

D. A. Mendis, “Progress in the study of dusty plasmas,” Plasma Sources Sci. Technol.11, A219–A228 (2002).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik träber Medien speziell kolloidaler Metaläsungen,” Ann. Phys.25, 377–445 (1908).
[CrossRef]

Nees, D.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

R. A. Shelby, D. R. Smith, S. Shultz, and S. C. Nemat-Nasser, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett.78, 489–491 (2001).
[CrossRef]

Neumann, B.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Ni, Y. X.

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plasmonics5, 251–258 (2010).
[CrossRef]

Nikolaides, M. G.

M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, and D. A. Weitz, “Electric-field-induced capillary attraction between like-charged particles at liquid interfaces,” Nature420, 299–301 (2002).
[CrossRef] [PubMed]

Parker, A. W.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Paunov, V. N.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Qiu, C. W.

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plasmonics5, 251–258 (2010).
[CrossRef]

Raptis, A. C.

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111, 2550–2557 (2010).
[CrossRef]

Rosenkrantz, E.

E. Rosenkrantz and S. Arnon, “Resonance frequencies of electrically charged nanoparticles,” IEEE Photonics Journal3, 82–88 (2011).
[CrossRef]

E. Rosenkrantz and S. Arnon, “Enhanced absorption of light by charged nanoparticles,” Opt. Lett.35, 1178–1180 (2010).
[CrossRef] [PubMed]

Salandrino, A.

Shelby, R. A.

R. A. Shelby, D. R. Smith, S. Shultz, and S. C. Nemat-Nasser, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett.78, 489–491 (2001).
[CrossRef]

Shultz, S.

R. A. Shelby, D. R. Smith, S. Shultz, and S. C. Nemat-Nasser, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett.78, 489–491 (2001).
[CrossRef]

Smith, D. R.

R. A. Shelby, D. R. Smith, S. Shultz, and S. C. Nemat-Nasser, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett.78, 489–491 (2001).
[CrossRef]

Ward, A. D.

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

Weitz, D. A.

M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, and D. A. Weitz, “Electric-field-induced capillary attraction between like-charged particles at liquid interfaces,” Nature420, 299–301 (2002).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu, J. S. Li, Z. Q. Zhang, and C. T Chan, “Effective medium theory for magnetodielectric composites: Beeyond the long-wavelength limit,” Phys. Rev. B74, 085111 (2006).
[CrossRef]

Wu, Z. S.

H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. of Electromagn. Waves and Appl.24, 2037–2047 (2010).

Xie, L.

X. C. Li, L. Xie, and X. J. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transf.113, 251–258 (2011).
[CrossRef]

Zhang, Z. Q.

Y. Wu, J. S. Li, Z. Q. Zhang, and C. T Chan, “Effective medium theory for magnetodielectric composites: Beeyond the long-wavelength limit,” Phys. Rev. B74, 085111 (2006).
[CrossRef]

Zheng, X. J.

X. C. Li, L. Xie, and X. J. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transf.113, 251–258 (2011).
[CrossRef]

Adv. Space Res. (1)

I. Mann, “Interplanetary medium - A dusty plasma,” Adv. Space Res.41160–167 (2008).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik träber Medien speziell kolloidaler Metaläsungen,” Ann. Phys.25, 377–445 (1908).
[CrossRef]

Appl. Phys. Lett. (1)

R. A. Shelby, D. R. Smith, S. Shultz, and S. C. Nemat-Nasser, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett.78, 489–491 (2001).
[CrossRef]

Can. J. Phys. (1)

C. F. Bohren and A. J. Hunt, “Scattering of electromagnetic waves by a charged sphere,” Can. J. Phys.55, 1930–1935 (1977).
[CrossRef]

IEEE Photonics Journal (1)

E. Rosenkrantz and S. Arnon, “Resonance frequencies of electrically charged nanoparticles,” IEEE Photonics Journal3, 82–88 (2011).
[CrossRef]

J. of Electromagn. Waves and Appl. (1)

H. Y. Li, Z. S. Wu, and L. Bai, “Scattering for charged multisphere structure located in plane wave/Gaussian beam,” J. of Electromagn. Waves and Appl.24, 2037–2047 (2010).

J. Phys. D (1)

O. Ishihara, “Complex plasma: dusts in plasma,” J. Phys. D40, R121–R147 (2007).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (3)

A. Heifetz, H. T. Chien, S. Liao, N. Gopalsami, and A. C. Raptis, “Millimeter-wave scattering from neutral and charged water droplets,” J. Quant. Spectrosc. Radiat. Transf.111, 2550–2557 (2010).
[CrossRef]

X. C. Li, L. Xie, and X. J. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transf.113, 251–258 (2011).
[CrossRef]

J. Klačka and M. Kocifaj, “Scattering of electromagnetic waves by charged spheres and some physical consequences,” J. Quant. Spectrosc. Radiat. Transf.106, 170–183 (2007).
[CrossRef]

Nature (2)

M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner, C. Gay, and D. A. Weitz, “Electric-field-induced capillary attraction between like-charged particles at liquid interfaces,” Nature420, 299–301 (2002).
[CrossRef] [PubMed]

M. Megens and J. Aizenberg, “Like-charged particles at liquid interfaces,” Nature424, 1014 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

J. F. Jin, S.Y. Liu, Z. F. Lin, and S. T. Chui, “Effective-medium theory for anistropic magnetic metamaterials,” Phys. Rev. B80, 115101 (2009).
[CrossRef]

Y. Wu, J. S. Li, Z. Q. Zhang, and C. T Chan, “Effective medium theory for magnetodielectric composites: Beeyond the long-wavelength limit,” Phys. Rev. B74, 085111 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

S. Y. Liu, W. K. Chen, J. J. Du, Z. F. Lin, S. T. Chui, and C. T. Chan, “Manipulating negative-refractive behavior with a magnetic field,” Phys. Rev. Lett.101, 157407 (2008).
[CrossRef] [PubMed]

R. Aveyard, B. P. Binks, J. H. Clint, P. D. I. Fletcher, T. S. Horozov, B. Neumann, V. N. Paunov, J. Annesley, S. W. Botchway, D. Nees, A. W. Parker, A. D. Ward, and A. Burgess, “Measurement of long-range repulsive forces between charged particles at an oil-water interface,” Phys. Rev. Lett.88, 246102 (2002).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical cloaking with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008).
[CrossRef]

R. L. Heinisch, F. X. Bronold, and H. Fehske, “Mie scattering by a charged dielectric particle,” Phys. Rev. Lett.109, 243903 (2012).
[CrossRef]

Plasma Sources Sci. Technol. (1)

D. A. Mendis, “Progress in the study of dusty plasmas,” Plasma Sources Sci. Technol.11, A219–A228 (2002).
[CrossRef]

Plasmonics (1)

Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plasmonics5, 251–258 (2010).
[CrossRef]

Prog. Electromagn. Res. (1)

J. Klačka and M. Kocifaj, “On the scattering of electromagnetic waves by a charged sphere,” Prog. Electromagn. Res.109, 17–35 (2010).
[CrossRef]

Other (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The permittivity difference Δε is plotted as a function of circular frequency ω for the fixed surface potential Φ = 600 V and the fixed size parameter x = 0.05.

Fig. 2
Fig. 2

The scattering efficiency Qsca (red solid line) and effective permittivity εe (blue dashed line) versus surface potential Φ at a fixed size parameter x = 0.05. Other parameters are ω = 1.5 × 1015, εs = 2ε0, and μs = μ0.

Fig. 3
Fig. 3

(a) The absorption efficiency Qabs (red solid line) and the real part of effective permittivity εe (blue dashed line) versus size parameter x at a fixed surface potential Φ = 500 V. (b) The absorption efficiency Qabs versus size parameter x under different surface potentials. Other parameters are R = 5 nm, εs = 2ε0, and μs = μ0.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

a n = μ s k ψ n ( y ) [ ψ n ( x ) g ψ n ( x ) ] μ 0 k s ψ n ( y ) ψ n ( x ) μ s k ψ n ( y ) [ ξ n ( x ) g ξ n ( x ) ] μ 0 k s ψ n ( y ) ξ n ( x ) ,
b n = μ s k ψ n ( y ) [ ψ n ( x ) + g ψ n ( x ) ] μ 0 k s ψ n ( y ) ψ n ( x ) μ s k ψ n ( y ) [ ξ n ( x ) + g ξ n ( x ) ] μ 0 k s ψ n ( y ) ξ n ( x ) ,
g = i ω μ 0 k 1 σ s = i ω μ 0 k 1 i η e / m e ω + i γ s = f Φ x ω ω + i γ s ,
ε e = ε s + 2 g ε 0 x , ( 1 g x μ s 2 μ 0 ) μ e = μ s ,
Δ ε = 2 f Φ x 2 ω ω + i γ s ε 0 , Δ μ = g x μ s 2 μ 0 μ s 1 g x μ s 2 μ 0 f Φ 2 ω ω + i γ s μ s 2 μ 0 .
Q sca = 2 x 2 n ( 2 n + 1 ) ( | a n | 2 + | b n | 2 ) , Q ext = 2 x 2 n ( 2 n + 1 ) Re { a n + b n } ,

Metrics