Abstract

We investigate the performance of digital filter back-propagation (DFBP) using coarse parameter estimation for mitigating SOA nonlinearity in coherent communication systems. We introduce a simple, low overhead method for parameter estimation for DFBP based on error vector magnitude (EVM) as a figure of merit. The bit error rate (BER) penalty achieved with this method has negligible penalty as compared to DFBP with fine parameter estimation. We examine different bias currents for two commercial SOAs used as booster amplifiers in our experiments to find optimum operating points and experimentally validate our method. The coarse parameter DFBP efficiently compensates SOA-induced nonlinearity for both SOA types in 80 km propagation of 16-QAM signal at 22 Gbaud.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Doerr, “High performance photonic integrated circuits for coherent fiber communication,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OWU5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWU5
    [CrossRef]
  2. G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “100 nm-bandwidth positive-efficiency wavelength conversion for m-PSK and m-QAM signals in QD-SOA,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OTh1C.6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh1C.6
    [CrossRef]
  3. C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
    [CrossRef]
  4. A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, “SOA intensity noise suppression: A Multicanonical Monte Carlo simulator of extremely low BER,” J. Lightwave Technol.27(14), 2667–2677 (2009).
    [CrossRef]
  5. Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “1050-kmWDM transmission of 8×10.709Gb/s DPSK signal using cascaded in-line semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.16(7), 1760–1762 (2004).
    [CrossRef]
  6. P. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. Khurgin, “Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz,” IEEE Photon. Technol. Lett.16(3), 918–920 (2004).
    [CrossRef]
  7. X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett.16(6), 1582–1584 (2004).
    [CrossRef]
  8. L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000).
    [CrossRef]
  9. D. Zimmerman and L. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol.22(1), 63–70 (2004).
    [CrossRef]
  10. T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, Y. Kawaguchi, M. Arai, and H. Yasaka, “Lossless 10-Gbit/s InP n-p-i-n Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2008), paper OThC5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OThC5
    [CrossRef]
  11. A. Nakanishi, N. Sasada, Y. Sakuma, R. Washino, K. Okamoto, H. Hayashi, H. Arimoto, and S. Tanaka, “Uncooled (0 to 85°C) and full C-band operation of a 10.7 Gbit/s InP Mach-Zehnder modulator monolithically integrated with SOA,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OW1G.3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OW1G.3
  12. N. Kamitani, Y. Yoshida, and K. Kitayama, “Experimental study on impact of SOA nonlinear phase noise in 40Gbps coherent 16QAM transmissions,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper P1.04. http://www.opticsinfobase.org/abstract.cfm?URI=ECEOC-2012-P1.04
    [CrossRef]
  13. A. Ghazisaeidi and L. A. Rusch, “On the efficiency of digital back-propagation for mitigating SOA-induced nonlinear impairments,” J. Lightwave Technol.29(21), 3331–3339 (2011).
    [CrossRef]
  14. S. Amiralizadeh, A. T. Nguyen, C.-S. Park, A. Ghazisaeidi, and L. A. Rusch, “Experimental validation of digital filter back-propagation to suppress SOA-induced nonlinearities in 16-QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OM2B.2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OM2B.2
    [CrossRef]
  15. F. Vacondio, A. Ghazisaeidi, A. Bononi, and L. A. Rusch, “Low-complexity compensation of SOA nonlinearity for single-channel PSK and OOK,” J. Lightwave Technol.28(3), 277–288 (2010).
    [CrossRef]
  16. X. Li and G. Li, “Electrical postcompensation of SOA impairments for fiber-optic transmission,” IEEE Photon. Technol. Lett.21(9), 581–583 (2009).
    [CrossRef]
  17. X. Li and G. Li, “Joint fiber and SOA compensation using digital backward propagation,” IEEE Photon. J.2(5), 753–758 (2010).
    [CrossRef]
  18. S. Lange, Y. Yoshida, and K. Kitayama, “ A low-complexity digital pre-compensation of SOA induced phase distortion in coherent QAM transmissions,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OTh3C.7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh3C.7
  19. B. Filion, A. Ghazisaeidi, L. A. Rusch, and S. Larochelle, “Extraction of semiconductor optical amplifier parameters for wavelength conversion modeling,” in Proceedings of IEEE Photonics Conference (Institute of Electrical and Electronics Engineers, Arlington, 2011), pp. 367–368.
    [CrossRef]
  20. A. Saleh, “Nonlinear models of travelling-wave optical amplifiers,” Electron. Lett.24(14), 835–837 (1988).
    [CrossRef]
  21. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
    [CrossRef]
  22. D. Cassioli, S. Scotti, and A. Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron.36(9), 1072–1080 (2000).
    [CrossRef]
  23. M. Selmi, Y. Jaouen, and P. Cibalt, “Accurate digital frequency estimator for coherent PolMux QAM transmission systems,” in European Conference and Exhibition on Optical Communication, Vienna, Austria, P3.08 (2009).
  24. S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum likelihood phase estimation in coherent M-ary phase-shifted keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
    [CrossRef]

2012 (2)

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

2011 (1)

2010 (2)

2009 (3)

X. Li and G. Li, “Electrical postcompensation of SOA impairments for fiber-optic transmission,” IEEE Photon. Technol. Lett.21(9), 581–583 (2009).
[CrossRef]

A. Ghazisaeidi, F. Vacondio, A. Bononi, and L. A. Rusch, “SOA intensity noise suppression: A Multicanonical Monte Carlo simulator of extremely low BER,” J. Lightwave Technol.27(14), 2667–2677 (2009).
[CrossRef]

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum likelihood phase estimation in coherent M-ary phase-shifted keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

2004 (4)

D. Zimmerman and L. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol.22(1), 63–70 (2004).
[CrossRef]

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “1050-kmWDM transmission of 8×10.709Gb/s DPSK signal using cascaded in-line semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.16(7), 1760–1762 (2004).
[CrossRef]

P. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. Khurgin, “Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz,” IEEE Photon. Technol. Lett.16(3), 918–920 (2004).
[CrossRef]

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett.16(6), 1582–1584 (2004).
[CrossRef]

2000 (2)

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000).
[CrossRef]

D. Cassioli, S. Scotti, and A. Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron.36(9), 1072–1080 (2000).
[CrossRef]

1988 (1)

A. Saleh, “Nonlinear models of travelling-wave optical amplifiers,” Electron. Lett.24(14), 835–837 (1988).
[CrossRef]

Achiam, Y.

P. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. Khurgin, “Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz,” IEEE Photon. Technol. Lett.16(3), 918–920 (2004).
[CrossRef]

Becker, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Binsma, J. J. M.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000).
[CrossRef]

Bogoni, A.

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
[CrossRef]

Bononi, A.

Cassioli, D.

D. Cassioli, S. Scotti, and A. Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron.36(9), 1072–1080 (2000).
[CrossRef]

Chandrasekhar, S.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett.16(6), 1582–1584 (2004).
[CrossRef]

Chen, J.

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum likelihood phase estimation in coherent M-ary phase-shifted keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

Cho, P.

P. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. Khurgin, “Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz,” IEEE Photon. Technol. Lett.16(3), 918–920 (2004).
[CrossRef]

Cibalt, P.

M. Selmi, Y. Jaouen, and P. Cibalt, “Accurate digital frequency estimator for coherent PolMux QAM transmission systems,” in European Conference and Exhibition on Optical Communication, Vienna, Austria, P3.08 (2009).

Contestabile, G.

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
[CrossRef]

Dong, Y.

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “1050-kmWDM transmission of 8×10.709Gb/s DPSK signal using cascaded in-line semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.16(7), 1760–1762 (2004).
[CrossRef]

Dreschmann, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Freude, W.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Garrett, L. D.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000).
[CrossRef]

Ghazisaeidi, A.

Gnauck, A. H.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000).
[CrossRef]

Gross, Y.

P. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. Khurgin, “Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz,” IEEE Photon. Technol. Lett.16(3), 918–920 (2004).
[CrossRef]

Hillerkuss, D.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Huebner, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Jaouen, Y.

M. Selmi, Y. Jaouen, and P. Cibalt, “Accurate digital frequency estimator for coherent PolMux QAM transmission systems,” in European Conference and Exhibition on Optical Communication, Vienna, Austria, P3.08 (2009).

Josten, A.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Kam, P. Y.

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum likelihood phase estimation in coherent M-ary phase-shifted keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

Khurgin, J.

P. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. Khurgin, “Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz,” IEEE Photon. Technol. Lett.16(3), 918–920 (2004).
[CrossRef]

Koenig, S.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Koos, C.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Leuthold, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett.16(6), 1582–1584 (2004).
[CrossRef]

Levy-Yurista, G.

P. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. Khurgin, “Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz,” IEEE Photon. Technol. Lett.16(3), 918–920 (2004).
[CrossRef]

Li, G.

X. Li and G. Li, “Joint fiber and SOA compensation using digital backward propagation,” IEEE Photon. J.2(5), 753–758 (2010).
[CrossRef]

X. Li and G. Li, “Electrical postcompensation of SOA impairments for fiber-optic transmission,” IEEE Photon. Technol. Lett.21(9), 581–583 (2009).
[CrossRef]

Li, X.

X. Li and G. Li, “Joint fiber and SOA compensation using digital backward propagation,” IEEE Photon. J.2(5), 753–758 (2010).
[CrossRef]

X. Li and G. Li, “Electrical postcompensation of SOA impairments for fiber-optic transmission,” IEEE Photon. Technol. Lett.21(9), 581–583 (2009).
[CrossRef]

Li, Z.

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “1050-kmWDM transmission of 8×10.709Gb/s DPSK signal using cascaded in-line semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.16(7), 1760–1762 (2004).
[CrossRef]

Liu, X.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett.16(6), 1582–1584 (2004).
[CrossRef]

Lu, C.

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “1050-kmWDM transmission of 8×10.709Gb/s DPSK signal using cascaded in-line semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.16(7), 1760–1762 (2004).
[CrossRef]

Margalit, M.

P. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. Khurgin, “Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz,” IEEE Photon. Technol. Lett.16(3), 918–920 (2004).
[CrossRef]

Mecozzi, A.

D. Cassioli, S. Scotti, and A. Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron.36(9), 1072–1080 (2000).
[CrossRef]

Meyer, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Mo, J.

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “1050-kmWDM transmission of 8×10.709Gb/s DPSK signal using cascaded in-line semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.16(7), 1760–1762 (2004).
[CrossRef]

Nebendahl, B.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Porzi, C.

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
[CrossRef]

Rusch, L. A.

Saleh, A.

A. Saleh, “Nonlinear models of travelling-wave optical amplifiers,” Electron. Lett.24(14), 835–837 (1988).
[CrossRef]

Sander-Jochem, M. J. H.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000).
[CrossRef]

Schmogrow, R.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Scotti, S.

D. Cassioli, S. Scotti, and A. Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron.36(9), 1072–1080 (2000).
[CrossRef]

Selmi, M.

M. Selmi, Y. Jaouen, and P. Cibalt, “Accurate digital frequency estimator for coherent PolMux QAM transmission systems,” in European Conference and Exhibition on Optical Communication, Vienna, Austria, P3.08 (2009).

Spiekman, L.

Spiekman, L. H.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000).
[CrossRef]

Su, Y.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett.16(6), 1582–1584 (2004).
[CrossRef]

Vacondio, F.

Van den Hoven, G. N.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000).
[CrossRef]

van Dongen, T.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000).
[CrossRef]

Wang, Y.

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “1050-kmWDM transmission of 8×10.709Gb/s DPSK signal using cascaded in-line semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.16(7), 1760–1762 (2004).
[CrossRef]

Wei, X.

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett.16(6), 1582–1584 (2004).
[CrossRef]

Wiesenfeld, J. M.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000).
[CrossRef]

Winter, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Yu, C.

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum likelihood phase estimation in coherent M-ary phase-shifted keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

Zhang, S.

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum likelihood phase estimation in coherent M-ary phase-shifted keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

Zimmerman, D.

Electron. Lett. (1)

A. Saleh, “Nonlinear models of travelling-wave optical amplifiers,” Electron. Lett.24(14), 835–837 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Cassioli, S. Scotti, and A. Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron.36(9), 1072–1080 (2000).
[CrossRef]

IEEE Photon. J. (1)

X. Li and G. Li, “Joint fiber and SOA compensation using digital backward propagation,” IEEE Photon. J.2(5), 753–758 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum likelihood phase estimation in coherent M-ary phase-shifted keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

Z. Li, Y. Dong, J. Mo, Y. Wang, and C. Lu, “1050-kmWDM transmission of 8×10.709Gb/s DPSK signal using cascaded in-line semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.16(7), 1760–1762 (2004).
[CrossRef]

P. Cho, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, and J. Khurgin, “Investigation of SOA nonlinearities on the amplification of DWDM channels with spectral efficiency up to 2.5 b/s/Hz,” IEEE Photon. Technol. Lett.16(3), 918–920 (2004).
[CrossRef]

X. Wei, Y. Su, X. Liu, J. Leuthold, and S. Chandrasekhar, “10-Gb/s RZ-DPSK transmitter using a saturated SOA as a power booster and limiting amplifier,” IEEE Photon. Technol. Lett.16(6), 1582–1584 (2004).
[CrossRef]

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. Van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “Transmission of 8 DWDM channels at 20 Gb/s over 160 km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.12(6), 717–719 (2000).
[CrossRef]

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
[CrossRef]

X. Li and G. Li, “Electrical postcompensation of SOA impairments for fiber-optic transmission,” IEEE Photon. Technol. Lett.21(9), 581–583 (2009).
[CrossRef]

J. Lightwave Technol. (4)

Other (9)

T. Yasui, Y. Shibata, K. Tsuzuki, N. Kikuchi, Y. Kawaguchi, M. Arai, and H. Yasaka, “Lossless 10-Gbit/s InP n-p-i-n Mach-Zehnder modulator monolithically integrated with semiconductor optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2008), paper OThC5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OThC5
[CrossRef]

A. Nakanishi, N. Sasada, Y. Sakuma, R. Washino, K. Okamoto, H. Hayashi, H. Arimoto, and S. Tanaka, “Uncooled (0 to 85°C) and full C-band operation of a 10.7 Gbit/s InP Mach-Zehnder modulator monolithically integrated with SOA,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OW1G.3. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OW1G.3

N. Kamitani, Y. Yoshida, and K. Kitayama, “Experimental study on impact of SOA nonlinear phase noise in 40Gbps coherent 16QAM transmissions,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America, 2012), paper P1.04. http://www.opticsinfobase.org/abstract.cfm?URI=ECEOC-2012-P1.04
[CrossRef]

C. R. Doerr, “High performance photonic integrated circuits for coherent fiber communication,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper OWU5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2010-OWU5
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “100 nm-bandwidth positive-efficiency wavelength conversion for m-PSK and m-QAM signals in QD-SOA,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OTh1C.6. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh1C.6
[CrossRef]

S. Amiralizadeh, A. T. Nguyen, C.-S. Park, A. Ghazisaeidi, and L. A. Rusch, “Experimental validation of digital filter back-propagation to suppress SOA-induced nonlinearities in 16-QAM,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OM2B.2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OM2B.2
[CrossRef]

M. Selmi, Y. Jaouen, and P. Cibalt, “Accurate digital frequency estimator for coherent PolMux QAM transmission systems,” in European Conference and Exhibition on Optical Communication, Vienna, Austria, P3.08 (2009).

S. Lange, Y. Yoshida, and K. Kitayama, “ A low-complexity digital pre-compensation of SOA induced phase distortion in coherent QAM transmissions,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OTh3C.7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2013-OTh3C.7

B. Filion, A. Ghazisaeidi, L. A. Rusch, and S. Larochelle, “Extraction of semiconductor optical amplifier parameters for wavelength conversion modeling,” in Proceedings of IEEE Photonics Conference (Institute of Electrical and Electronics Engineers, Arlington, 2011), pp. 367–368.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of coarse estimation method for DFBP.

Fig. 2
Fig. 2

Experimental setup for 22-Gbaud 16-QAM single-channel coherent detection system. SOA is used at transmitter to obtain higher launched power. Post-compensation block is added in the DSP part to mitigate nonlinearity induced by SOA. In configuration (B), 80 (or 60) km of SSMF is added and ASE noise loading is employed to adjust OSNR comparing to (A). The inset illustrates efficiency of coarse parameter DFBP for compensating nonlinearity induced by each of the two SOAs utilized in our experiment. BPG: bit pattern generator

Fig. 3
Fig. 3

BER versus launched power to the fiber with and without coarse parameter DFBP. (a) NL-SOA; inset: gain versus bias current. (b) L-SOA. sim.: simulations, exp.: experiment.

Fig. 4
Fig. 4

BER versus SOA input power for fine parameter DFBP, coarse parameter DFBP and DFBP using the parameters obtained from characterization of NL-SOA and L-SOA.

Fig. 5
Fig. 5

BER in function of τc and Psat. The specified point is the parameter pair found by EVM optimized, coarse estimation method for DFBP. (a) NL-SOA. (b) L-SOA.

Fig. 6
Fig. 6

BER versus OSNR in 0.1 nm resolution bandwidth. With application of SOA at transmitter and using DFBP with coarse parameter estimation, signal can be transmitted over 80 km of fiber which is accompanied with 3.8 dB OSNR penalty at FEC threshold of 3.8e-3 comparing to B2B case without SOA and fiber.

Tables (1)

Tables Icon

Table 1 SOA Parameters used for simulation of SOA (K = 80) and in DFBP (K = 1)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Eout(t)=Ein(t) e 1 2 (1jα)h(t) ,
τc dh(t) dt =h0h(t)( e h(t) 1) | Ein(t) | 2 Psat ,
h0 h ¯ =( e h ¯ 1) | Ein(t) | 2 Psat ,
c1= 1 e h ¯ 1+ | Ein | 2 e h ¯ Psat Δt Δt+τeff ,
c2= Δt2τeff Δt+2τeff ,
τeff= τc 1+ | Ein | 2 e h ¯ Psat .
EVM= 1 N i=1 N | EiE0,i | 2 ,

Metrics