Abstract

Deterministic hydrodynamic polishing with HyDRa requires a precise control of polishing parameters, such as propelling air pressure, slurry density, slurry flux and tool height. We describe the HyDRa polishing system and prove how precise, deterministic polishing can be achieved in terms of the control of these parameters. The polishing results of an 84 cm hyperbolic mirror are presented to illustrate how the stability of these parameters is important to obtain high-quality surfaces.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.A. Jones, “Computer control for grinding and polishing,” Photonics Spectra, 34–39 (1963).
  2. R. A. Jones, Computer-controlled polishing of telescope mirror segments, Opt. Eng.22, 236–240 (1983).
    [CrossRef]
  3. Kordonski William and Sergei Gorodkin, “Material Removal in Magnetorheological Finishing of Optics,” Appl. Opt.50, 1984–1994 (2011).
    [CrossRef]
  4. Piché, Francois, and Andrew R. Clarkson, “One Year of Finishing Meter-Class Optics with MRFat L-3 IOS Brashear Optics,” In Optical Fabrication and Testing, OThB6. OSA Technical Digest (CD). Optical Society of America, 2010.
  5. L. N. Allen, R. E. Keim, T. S. Lewis, and J. R. Ullom, “Surface error correction of a Keck 10-m telescope primary mirror segment by ion-beam figuring,” Proc. SPIE1531, Advanced Optical Manufacturing and testing II, 195 (1992).
    [CrossRef]
  6. D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S.W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat and aspheric surfaces,” Opt. Express11(8), 958–964 (2003).
    [CrossRef] [PubMed]
  7. D. W. Kim and J. H. Burge, “Rigid confromal tool using non-linear visco-elastic effect,” Opt. Express18(3), 2242–2256 (2010).
    [CrossRef] [PubMed]
  8. E. Sohn, E. Ruiz, L. Salas, E. Luna, and J. Herrera, “HyDRa: polishing with a vortex,” Appl. Opt. (submitted to, 2013).
  9. O. W. Fähnle, H. van Brug, and H. J. Frankena, “Fluid Jet Polishing of Optical Surfaces,” Appl. Opt.37, 6771–6773 (1998).
    [CrossRef]
  10. E. Ruiz, E. Sohn, L. Salas, and E. Luna, “Hydrodynamic radial flux tool for polishing and grinding optical and semiconductor surfaces,” US patent 7169012 (2007).
  11. E. Sohn, E. Ruiz, L. Salas, E. Luna, J. Herrera, F. Quiros, M. Nunez, and E. Lopez, “Polishing results of an 84 cm primary mirror with HyDRa,” Proc. SPIE Optifab, TD07-17 (2011).
  12. E. Luna, L. Salas, E. Sohn, E. Ruiz, J.M. Nunez, and J. Herrera, “Deterministic convergence in iterative phase shifting,” Appl. Opt.48, 1494–1501 (2009).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

2009 (1)

2003 (1)

1998 (1)

1992 (1)

L. N. Allen, R. E. Keim, T. S. Lewis, and J. R. Ullom, “Surface error correction of a Keck 10-m telescope primary mirror segment by ion-beam figuring,” Proc. SPIE1531, Advanced Optical Manufacturing and testing II, 195 (1992).
[CrossRef]

1983 (1)

R. A. Jones, Computer-controlled polishing of telescope mirror segments, Opt. Eng.22, 236–240 (1983).
[CrossRef]

1963 (1)

R.A. Jones, “Computer control for grinding and polishing,” Photonics Spectra, 34–39 (1963).

Allen, L. N.

L. N. Allen, R. E. Keim, T. S. Lewis, and J. R. Ullom, “Surface error correction of a Keck 10-m telescope primary mirror segment by ion-beam figuring,” Proc. SPIE1531, Advanced Optical Manufacturing and testing II, 195 (1992).
[CrossRef]

Brooks, D.

Burge, J. H.

Clarkson, Andrew R.

Piché, Francois, and Andrew R. Clarkson, “One Year of Finishing Meter-Class Optics with MRFat L-3 IOS Brashear Optics,” In Optical Fabrication and Testing, OThB6. OSA Technical Digest (CD). Optical Society of America, 2010.

Fähnle, O. W.

Francois,

Piché, Francois, and Andrew R. Clarkson, “One Year of Finishing Meter-Class Optics with MRFat L-3 IOS Brashear Optics,” In Optical Fabrication and Testing, OThB6. OSA Technical Digest (CD). Optical Society of America, 2010.

Frankena, H. J.

Freeman, R.

Gorodkin, Sergei

Herrera, J.

E. Luna, L. Salas, E. Sohn, E. Ruiz, J.M. Nunez, and J. Herrera, “Deterministic convergence in iterative phase shifting,” Appl. Opt.48, 1494–1501 (2009).
[CrossRef] [PubMed]

E. Sohn, E. Ruiz, L. Salas, E. Luna, and J. Herrera, “HyDRa: polishing with a vortex,” Appl. Opt. (submitted to, 2013).

E. Sohn, E. Ruiz, L. Salas, E. Luna, J. Herrera, F. Quiros, M. Nunez, and E. Lopez, “Polishing results of an 84 cm primary mirror with HyDRa,” Proc. SPIE Optifab, TD07-17 (2011).

Jones, R. A.

R. A. Jones, Computer-controlled polishing of telescope mirror segments, Opt. Eng.22, 236–240 (1983).
[CrossRef]

Jones, R.A.

R.A. Jones, “Computer control for grinding and polishing,” Photonics Spectra, 34–39 (1963).

Keim, R. E.

L. N. Allen, R. E. Keim, T. S. Lewis, and J. R. Ullom, “Surface error correction of a Keck 10-m telescope primary mirror segment by ion-beam figuring,” Proc. SPIE1531, Advanced Optical Manufacturing and testing II, 195 (1992).
[CrossRef]

Kim, D. W.

Kim, S.W.

King, A.

Lewis, T. S.

L. N. Allen, R. E. Keim, T. S. Lewis, and J. R. Ullom, “Surface error correction of a Keck 10-m telescope primary mirror segment by ion-beam figuring,” Proc. SPIE1531, Advanced Optical Manufacturing and testing II, 195 (1992).
[CrossRef]

Lopez, E.

E. Sohn, E. Ruiz, L. Salas, E. Luna, J. Herrera, F. Quiros, M. Nunez, and E. Lopez, “Polishing results of an 84 cm primary mirror with HyDRa,” Proc. SPIE Optifab, TD07-17 (2011).

Luna, E.

E. Luna, L. Salas, E. Sohn, E. Ruiz, J.M. Nunez, and J. Herrera, “Deterministic convergence in iterative phase shifting,” Appl. Opt.48, 1494–1501 (2009).
[CrossRef] [PubMed]

E. Sohn, E. Ruiz, L. Salas, E. Luna, and J. Herrera, “HyDRa: polishing with a vortex,” Appl. Opt. (submitted to, 2013).

E. Sohn, E. Ruiz, L. Salas, E. Luna, J. Herrera, F. Quiros, M. Nunez, and E. Lopez, “Polishing results of an 84 cm primary mirror with HyDRa,” Proc. SPIE Optifab, TD07-17 (2011).

E. Ruiz, E. Sohn, L. Salas, and E. Luna, “Hydrodynamic radial flux tool for polishing and grinding optical and semiconductor surfaces,” US patent 7169012 (2007).

McCavana, G.

Morton, R.

Nunez, J.M.

Nunez, M.

E. Sohn, E. Ruiz, L. Salas, E. Luna, J. Herrera, F. Quiros, M. Nunez, and E. Lopez, “Polishing results of an 84 cm primary mirror with HyDRa,” Proc. SPIE Optifab, TD07-17 (2011).

Piché,

Piché, Francois, and Andrew R. Clarkson, “One Year of Finishing Meter-Class Optics with MRFat L-3 IOS Brashear Optics,” In Optical Fabrication and Testing, OThB6. OSA Technical Digest (CD). Optical Society of America, 2010.

Quiros, F.

E. Sohn, E. Ruiz, L. Salas, E. Luna, J. Herrera, F. Quiros, M. Nunez, and E. Lopez, “Polishing results of an 84 cm primary mirror with HyDRa,” Proc. SPIE Optifab, TD07-17 (2011).

Ruiz, E.

E. Luna, L. Salas, E. Sohn, E. Ruiz, J.M. Nunez, and J. Herrera, “Deterministic convergence in iterative phase shifting,” Appl. Opt.48, 1494–1501 (2009).
[CrossRef] [PubMed]

E. Sohn, E. Ruiz, L. Salas, E. Luna, and J. Herrera, “HyDRa: polishing with a vortex,” Appl. Opt. (submitted to, 2013).

E. Sohn, E. Ruiz, L. Salas, E. Luna, J. Herrera, F. Quiros, M. Nunez, and E. Lopez, “Polishing results of an 84 cm primary mirror with HyDRa,” Proc. SPIE Optifab, TD07-17 (2011).

E. Ruiz, E. Sohn, L. Salas, and E. Luna, “Hydrodynamic radial flux tool for polishing and grinding optical and semiconductor surfaces,” US patent 7169012 (2007).

Salas, L.

E. Luna, L. Salas, E. Sohn, E. Ruiz, J.M. Nunez, and J. Herrera, “Deterministic convergence in iterative phase shifting,” Appl. Opt.48, 1494–1501 (2009).
[CrossRef] [PubMed]

E. Sohn, E. Ruiz, L. Salas, E. Luna, and J. Herrera, “HyDRa: polishing with a vortex,” Appl. Opt. (submitted to, 2013).

E. Ruiz, E. Sohn, L. Salas, and E. Luna, “Hydrodynamic radial flux tool for polishing and grinding optical and semiconductor surfaces,” US patent 7169012 (2007).

E. Sohn, E. Ruiz, L. Salas, E. Luna, J. Herrera, F. Quiros, M. Nunez, and E. Lopez, “Polishing results of an 84 cm primary mirror with HyDRa,” Proc. SPIE Optifab, TD07-17 (2011).

Sohn, E.

E. Luna, L. Salas, E. Sohn, E. Ruiz, J.M. Nunez, and J. Herrera, “Deterministic convergence in iterative phase shifting,” Appl. Opt.48, 1494–1501 (2009).
[CrossRef] [PubMed]

E. Sohn, E. Ruiz, L. Salas, E. Luna, and J. Herrera, “HyDRa: polishing with a vortex,” Appl. Opt. (submitted to, 2013).

E. Sohn, E. Ruiz, L. Salas, E. Luna, J. Herrera, F. Quiros, M. Nunez, and E. Lopez, “Polishing results of an 84 cm primary mirror with HyDRa,” Proc. SPIE Optifab, TD07-17 (2011).

E. Ruiz, E. Sohn, L. Salas, and E. Luna, “Hydrodynamic radial flux tool for polishing and grinding optical and semiconductor surfaces,” US patent 7169012 (2007).

Ullom, J. R.

L. N. Allen, R. E. Keim, T. S. Lewis, and J. R. Ullom, “Surface error correction of a Keck 10-m telescope primary mirror segment by ion-beam figuring,” Proc. SPIE1531, Advanced Optical Manufacturing and testing II, 195 (1992).
[CrossRef]

van Brug, H.

Walker, D. D.

William, Kordonski

Appl. Opt. (3)

Opt. Eng. (1)

R. A. Jones, Computer-controlled polishing of telescope mirror segments, Opt. Eng.22, 236–240 (1983).
[CrossRef]

Opt. Express (2)

Photonics Spectra (1)

R.A. Jones, “Computer control for grinding and polishing,” Photonics Spectra, 34–39 (1963).

Proc. SPIE (1)

L. N. Allen, R. E. Keim, T. S. Lewis, and J. R. Ullom, “Surface error correction of a Keck 10-m telescope primary mirror segment by ion-beam figuring,” Proc. SPIE1531, Advanced Optical Manufacturing and testing II, 195 (1992).
[CrossRef]

Other (4)

Piché, Francois, and Andrew R. Clarkson, “One Year of Finishing Meter-Class Optics with MRFat L-3 IOS Brashear Optics,” In Optical Fabrication and Testing, OThB6. OSA Technical Digest (CD). Optical Society of America, 2010.

E. Sohn, E. Ruiz, L. Salas, E. Luna, and J. Herrera, “HyDRa: polishing with a vortex,” Appl. Opt. (submitted to, 2013).

E. Ruiz, E. Sohn, L. Salas, and E. Luna, “Hydrodynamic radial flux tool for polishing and grinding optical and semiconductor surfaces,” US patent 7169012 (2007).

E. Sohn, E. Ruiz, L. Salas, E. Luna, J. Herrera, F. Quiros, M. Nunez, and E. Lopez, “Polishing results of an 84 cm primary mirror with HyDRa,” Proc. SPIE Optifab, TD07-17 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The HyDRa system

Fig. 2
Fig. 2

The HyDRa polishing robot about to polish the 84 cm mirror. The upper left insert shows details of the HyDRa tool mounted onto the hexapod via a load cell.

Fig. 3
Fig. 3

Tool characteristic curves, where the relation between slurry flux (f) and injected slurry pressure (Pp) is shown for various accelerating pressures (PT = 30, 40, 50 and 60 PSI). Linear fits are indicated in each case. The horizontal line represents operating points of HyDRa for different accelerating pressures PT.

Fig. 4
Fig. 4

Photo-current measured by the photo-transistor as a function of slurry concentration, given by its relative density to water RD. The solid line is a fit to an expected exponential decay in transmitted light intensity F.

Fig. 5
Fig. 5

Dimensionless normalized removal rate D/D̄ with respect to the normalized value of different polishing parameters (mass concentration ρi a), propelling pressure PT b), slurry flux f c) and tool height z d)). The sensitivity of removal to each parameter is indicated in the upper left corner of each graph.

Fig. 6
Fig. 6

Block digram of the metrology system used for measuring the 84 cm mirror.

Fig. 7
Fig. 7

Four error maps showing the progression of the polishing process. All maps have the same z-scale, shown in nm. a) shows the initial surface before polishing (500 nm RMS) and d) the final obtained surface (62 nm RMS). b), c) are intermediate iterations (305 and 125 nm RMS, respectively).

Fig. 8
Fig. 8

The 84 cm mirror that was polished with HyDRa. a) shows a picture of the mirror showing the internal back-structure. b) shows the mirror prior to HyDRa finishing. Note the print-through left by the previous lap-polishing. c) shows the surface after HyDRa polishing. The print-through has entirely been removed by zero normal force error-map based polishing. In these figures, low-order Zernikes have been removed in order to highlight this effect. The mirror face-plate is 1 cm thick. Z-scales are the same and are shown as vetical bars in nm.

Fig. 9
Fig. 9

Total material removed in the last iteration (3 runs= 30 hours) as a function of dwell time in each area element of 2.6×2.6 mm2 (pixel size). The expected for a completely deterministic process is a linear relation at the removal rate of 13 mm3/hr (shown as a solid line). The actual deviations from this behavior amount to 10.6% which is the attained level of non-determinism and is the standard deviation of the points with respect to the best-fit line.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = K 2 e K 1 ( R D 1 ) + I D .
δ D T = ( 1.18 * δ ρ ) 2 + ( 2 * δ P T ) 2 + ( 0.2 * δ f ) 2 + ( 0.8 * δ z ) 2

Metrics