Abstract

The parametric amplification gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber (HMOF) are simulated based on four wave mixing process. The fiber core and cladding materials are made of TeO2–Li2O–WO3–MoO3–Nb2O5 and TeO2–ZnO–Na2O–P2O5 glass, respectively. The fiber has four zero-dispersion wavelengths and the chromatic dispersion is flattened near the zero-dispersion wavelengths. A broad gain bandwidth as wide as 1200 nm from 1290 to 2490 nm can be realized in the near infrared window by using a tellurite HMOF as short as 25 cm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett.21(8), 573–575 (1996).
    [CrossRef] [PubMed]
  2. R. Dabu, “Very broad gain bandwidth parametric amplification in nonlinear crystals at critical wavelength degeneracy,” Opt. Express18(11), 11689–11699 (2010).
    [CrossRef] [PubMed]
  3. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett.26(14), 1048–1050 (2001).
    [CrossRef] [PubMed]
  4. B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express21(3), 2707–2717 (2013).
    [CrossRef] [PubMed]
  5. G. M. Lloyd, I. G. Hughes, R. Bratfalean, and P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B67(1), 107–113 (1998).
    [CrossRef]
  6. A. L. Zhang and M. S. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett.30(18), 2375–2377 (2005).
    [CrossRef] [PubMed]
  7. C. S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express19(26), B621–B627 (2011).
    [CrossRef] [PubMed]
  8. S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002).
    [CrossRef]
  9. P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett.103(4), 043602 (2009).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress,” J. Opt. Soc. Am. B28(12), A1–A10 (2011).
    [CrossRef]
  11. J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE. J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
    [CrossRef]
  12. J. Hansryd and P. A. Andrekson, “Wavelength tunable 40 GHz pulse source based on fiber optical parametric amplifier,” Electron. Lett.37(9), 584–585 (2001).
    [CrossRef]
  13. J. Hansryd and P. A. Andrekson, “O-TDM demultiplexer with 40 dB gain based on a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.13(7), 732–734 (2001).
    [CrossRef]
  14. J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300 Gbit/s eye-diagram measurement by optical sampling using fiber based parametric amplification,”in Proceedings of the Optical Fiber Communication (OFC) Conf. and Exhibit 4, (2001).
  15. J. A. Levenson, I. Abram, Th. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B10(11), 2233–2238 (1993).
    [CrossRef]
  16. K. Inoue, “Four wave mixing in an optical fiber in the zero dispersion wavelength region,” J. Lightwave Technol.10(11), 1553–1561 (1992).
    [CrossRef]
  17. M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazosky, “200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain,” J. Lightwave Technol.19(7), 977–981 (2001).
    [CrossRef]
  18. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
    [CrossRef]
  19. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett.17(7), 1474–1476 (2005).
    [CrossRef]
  20. R. H. Stolen, M. A. Bösch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett.6(5), 213–215 (1981).
    [CrossRef] [PubMed]
  21. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B29(8), 1959–1976 (2012).
    [CrossRef]
  22. M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
    [CrossRef] [PubMed]
  23. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(061106), 1–3 (2010).
  24. A. X. Lin, A. Ryasnyanskiy, and J. Toulouse, “Tunable third-harmonic generation in a solid-core tellurite glass fiber,” Opt. Lett.36(17), 3437–3439 (2011).
    [CrossRef] [PubMed]
  25. M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17(18), 15481–15490 (2009).
    [CrossRef] [PubMed]
  26. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
    [CrossRef] [PubMed]
  27. Z. Duan, M. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite composite microstructured optical fibers with tailored chromatic dispersion for nonlinear applications,” Appl. Phys. Express4(72502), 1–3 (2011).
  28. T. H. Tuan, K. Asano, Z. Duan, M. Liao, T. Suzuki, and Y. Ohishi, “Novel tellurite-phosphate composite microstructured optical fibers for highly nonlinear applications,” Phys. Status Solidi C9(12), 2598–2601 (2012).
    [CrossRef]
  29. M. R. E. Lamont, B. T. Kuhlmey, and C. M. de Sterke, “Multi-order dispersion engineering for optimal four-wave mixing,” Opt. Express16(10), 7551–7563 (2008).
    [CrossRef] [PubMed]
  30. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
    [CrossRef] [PubMed]

2013 (1)

2012 (2)

E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “Phase matching for parametric generation in polarization maintaining photonic crystal fiber pumped by tunable Yb-doped fiber laser,” J. Opt. Soc. Am. B29(8), 1959–1976 (2012).
[CrossRef]

T. H. Tuan, K. Asano, Z. Duan, M. Liao, T. Suzuki, and Y. Ohishi, “Novel tellurite-phosphate composite microstructured optical fibers for highly nonlinear applications,” Phys. Status Solidi C9(12), 2598–2601 (2012).
[CrossRef]

2011 (5)

2010 (2)

R. Dabu, “Very broad gain bandwidth parametric amplification in nonlinear crystals at critical wavelength degeneracy,” Opt. Express18(11), 11689–11699 (2010).
[CrossRef] [PubMed]

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(061106), 1–3 (2010).

2009 (3)

2008 (1)

2005 (3)

A. L. Zhang and M. S. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett.30(18), 2375–2377 (2005).
[CrossRef] [PubMed]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett.17(7), 1474–1476 (2005).
[CrossRef]

2003 (1)

2002 (2)

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE. J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

2001 (4)

J. Hansryd and P. A. Andrekson, “Wavelength tunable 40 GHz pulse source based on fiber optical parametric amplifier,” Electron. Lett.37(9), 584–585 (2001).
[CrossRef]

J. Hansryd and P. A. Andrekson, “O-TDM demultiplexer with 40 dB gain based on a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.13(7), 732–734 (2001).
[CrossRef]

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett.26(14), 1048–1050 (2001).
[CrossRef] [PubMed]

M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazosky, “200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain,” J. Lightwave Technol.19(7), 977–981 (2001).
[CrossRef]

1998 (1)

G. M. Lloyd, I. G. Hughes, R. Bratfalean, and P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B67(1), 107–113 (1998).
[CrossRef]

1996 (1)

1993 (1)

1992 (1)

K. Inoue, “Four wave mixing in an optical fiber in the zero dispersion wavelength region,” J. Lightwave Technol.10(11), 1553–1561 (1992).
[CrossRef]

1981 (1)

Abram, I.

Agrawal, G. P.

Akasaka, Y.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE. J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

J. Hansryd and P. A. Andrekson, “O-TDM demultiplexer with 40 dB gain based on a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.13(7), 732–734 (2001).
[CrossRef]

J. Hansryd and P. A. Andrekson, “Wavelength tunable 40 GHz pulse source based on fiber optical parametric amplifier,” Electron. Lett.37(9), 584–585 (2001).
[CrossRef]

Asano, K.

T. H. Tuan, K. Asano, Z. Duan, M. Liao, T. Suzuki, and Y. Ohishi, “Novel tellurite-phosphate composite microstructured optical fibers for highly nonlinear applications,” Phys. Status Solidi C9(12), 2598–2601 (2012).
[CrossRef]

Babin, S. A.

Bang, O.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(061106), 1–3 (2010).

Bhagwat, A. R.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett.103(4), 043602 (2009).
[CrossRef] [PubMed]

Bjarklev, A.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

Bösch, M. A.

Brar, K.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002).
[CrossRef]

Bratfalean, R.

G. M. Lloyd, I. G. Hughes, R. Bratfalean, and P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B67(1), 107–113 (1998).
[CrossRef]

Brès, C. S.

Buccoliero, D.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(061106), 1–3 (2010).

Centanni, J. C.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002).
[CrossRef]

Chaudhari, C.

Chiang, T. K.

Chow, K. K.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

Chraplyvy, A. R.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002).
[CrossRef]

Cohen, O.

Coker, A.

Dabu, R.

de Sterke, C. M.

Demokan, M. S.

Duan, Z.

T. H. Tuan, K. Asano, Z. Duan, M. Liao, T. Suzuki, and Y. Ohishi, “Novel tellurite-phosphate composite microstructured optical fibers for highly nonlinear applications,” Phys. Status Solidi C9(12), 2598–2601 (2012).
[CrossRef]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

Z. Duan, M. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite composite microstructured optical fibers with tailored chromatic dispersion for nonlinear applications,” Appl. Phys. Express4(72502), 1–3 (2011).

Ebendorff-Heidepriem, H.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(061106), 1–3 (2010).

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

Ewart, P.

G. M. Lloyd, I. G. Hughes, R. Bratfalean, and P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B67(1), 107–113 (1998).
[CrossRef]

Fang, B.

Finazzi, V.

Fiorentino, M.

Frampton, K.

Gaeta, A. L.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett.103(4), 043602 (2009).
[CrossRef] [PubMed]

Gao, W.

Grangier, P.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE. J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

J. Hansryd and P. A. Andrekson, “Wavelength tunable 40 GHz pulse source based on fiber optical parametric amplifier,” Electron. Lett.37(9), 584–585 (2001).
[CrossRef]

J. Hansryd and P. A. Andrekson, “O-TDM demultiplexer with 40 dB gain based on a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.13(7), 732–734 (2001).
[CrossRef]

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett.17(7), 1474–1476 (2005).
[CrossRef]

Headley, C.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002).
[CrossRef]

Hedekvist, P. O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE. J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Ho, M. C.

Hughes, I. G.

G. M. Lloyd, I. G. Hughes, R. Bratfalean, and P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B67(1), 107–113 (1998).
[CrossRef]

Inoue, K.

K. Inoue, “Four wave mixing in an optical fiber in the zero dispersion wavelength region,” J. Lightwave Technol.10(11), 1553–1561 (1992).
[CrossRef]

Jorgensen, C. G.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002).
[CrossRef]

Kablukov, S. I.

Kagi, N.

Kazosky, L. G.

Kazovsky, L. G.

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett.17(7), 1474–1476 (2005).
[CrossRef]

Kito, C.

Z. Duan, M. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite composite microstructured optical fibers with tailored chromatic dispersion for nonlinear applications,” Appl. Phys. Express4(72502), 1–3 (2011).

Kuhlmey, B. T.

Kumar, P.

Lamont, M. R. E.

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett.17(7), 1474–1476 (2005).
[CrossRef]

Levenson, J. A.

Liao, M.

Lie, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE. J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Lin, A. X.

Lin, C.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

R. H. Stolen, M. A. Bösch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett.6(5), 213–215 (1981).
[CrossRef] [PubMed]

Lloyd, G. M.

G. M. Lloyd, I. G. Hughes, R. Bratfalean, and P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B67(1), 107–113 (1998).
[CrossRef]

Londero, P.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett.103(4), 043602 (2009).
[CrossRef] [PubMed]

Lorenz, V. O.

Marhic, M.

Marhic, M. E.

McKinstrie, C. J.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002).
[CrossRef]

Monro, T. M.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(061106), 1–3 (2010).

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

Moore, R. C.

Moreno, J. B.

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett.17(7), 1474–1476 (2005).
[CrossRef]

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett.17(7), 1474–1476 (2005).
[CrossRef]

Ohishi, Y.

Petropoulos, P.

Qin, G.

Radic, S.

C. S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express19(26), B621–B627 (2011).
[CrossRef] [PubMed]

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002).
[CrossRef]

Raybon, G.

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002).
[CrossRef]

Richardson, D. J.

Rivera, Th.

Ryasnyanskiy, A.

Sharping, J. E.

Shu, C.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

Slepkov, A. D.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett.103(4), 043602 (2009).
[CrossRef] [PubMed]

Steffensen, H.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(061106), 1–3 (2010).

Stolen, R. H.

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett.17(7), 1474–1476 (2005).
[CrossRef]

Suzuki, T.

Toulouse, J.

Tuan, T. H.

T. H. Tuan, K. Asano, Z. Duan, M. Liao, T. Suzuki, and Y. Ohishi, “Novel tellurite-phosphate composite microstructured optical fibers for highly nonlinear applications,” Phys. Status Solidi C9(12), 2598–2601 (2012).
[CrossRef]

Uesaka, K.

Venkataraman, V.

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett.103(4), 043602 (2009).
[CrossRef] [PubMed]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE. J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

Wiberg, A. O. J.

Windeler, R. S.

Yan, X.

Zhang, A. L.

Zlatanovic, S.

Zlobina, E. A.

Appl. Phys. B (1)

G. M. Lloyd, I. G. Hughes, R. Bratfalean, and P. Ewart, “Broadband degenerate four-wave mixing of OH for flame thermometry,” Appl. Phys. B67(1), 107–113 (1998).
[CrossRef]

Appl. Phys. Express (1)

Z. Duan, M. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite composite microstructured optical fibers with tailored chromatic dispersion for nonlinear applications,” Appl. Phys. Express4(72502), 1–3 (2011).

Appl. Phys. Lett. (1)

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(061106), 1–3 (2010).

Electron. Lett. (1)

J. Hansryd and P. A. Andrekson, “Wavelength tunable 40 GHz pulse source based on fiber optical parametric amplifier,” Electron. Lett.37(9), 584–585 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. Hansryd and P. A. Andrekson, “O-TDM demultiplexer with 40 dB gain based on a fiber optical parametric amplifier,” IEEE Photon. Technol. Lett.13(7), 732–734 (2001).
[CrossRef]

S. Radic, C. J. McKinstrie, A. R. Chraplyvy, G. Raybon, J. C. Centanni, C. G. Jorgensen, K. Brar, and C. Headley, “Continuous-wave parametric gain synthesis using nondegenerate pump four-wave-mixing,” IEEE Photon. Technol. Lett.14(10), 1406–1408 (2002).
[CrossRef]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett.17(7), 1474–1476 (2005).
[CrossRef]

IEEE. J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Lie, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE. J. Sel. Top. Quantum Electron.8(3), 506–520 (2002).
[CrossRef]

J. Lightwave Technol. (2)

K. Inoue, “Four wave mixing in an optical fiber in the zero dispersion wavelength region,” J. Lightwave Technol.10(11), 1553–1561 (1992).
[CrossRef]

M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazosky, “200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain,” J. Lightwave Technol.19(7), 977–981 (2001).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (8)

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express21(3), 2707–2717 (2013).
[CrossRef] [PubMed]

C. S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express19(26), B621–B627 (2011).
[CrossRef] [PubMed]

M. R. E. Lamont, B. T. Kuhlmey, and C. M. de Sterke, “Multi-order dispersion engineering for optimal four-wave mixing,” Opt. Express16(10), 7551–7563 (2008).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

M. Liao, X. Yan, G. Qin, C. Chaudhari, T. Suzuki, and Y. Ohishi, “A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation,” Opt. Express17(18), 15481–15490 (2009).
[CrossRef] [PubMed]

R. Dabu, “Very broad gain bandwidth parametric amplification in nonlinear crystals at critical wavelength degeneracy,” Opt. Express18(11), 11689–11699 (2010).
[CrossRef] [PubMed]

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett.103(4), 043602 (2009).
[CrossRef] [PubMed]

Phys. Status Solidi C (1)

T. H. Tuan, K. Asano, Z. Duan, M. Liao, T. Suzuki, and Y. Ohishi, “Novel tellurite-phosphate composite microstructured optical fibers for highly nonlinear applications,” Phys. Status Solidi C9(12), 2598–2601 (2012).
[CrossRef]

Other (1)

J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300 Gbit/s eye-diagram measurement by optical sampling using fiber based parametric amplification,”in Proceedings of the Optical Fiber Communication (OFC) Conf. and Exhibit 4, (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The structure of the highly nonlinear tellurite HMOF. The core diameter D = 0.894 μm, the air hole diameter d = 2.26 μm and the pitch Λ = 1.997 μm. (b) The chromatic dispersion of the highly nonlinear tellurite HMOF with four ZDWs at 1422, 1678, 1849 and 2195 nm.

Fig. 2
Fig. 2

(a), (c), (e) Optical signal gain maps and (b), (d), (f) optical signal gain spectra and linear phase-mismatch at pump wavelength λ = 1550 nm. The pump power P = 1 W and the fiber length changed from 30 to 50 cm.

Fig. 3
Fig. 3

(a) The linear phase-mismatch and (b) optical signal gain spectra at the pump wavelength λ = 1550 nm for different fiber length L from 10 to 90cm. The pump power was 1 W.

Fig. 4
Fig. 4

(a), (c), (e) Optical signal gain maps and (b), (d), (f) optical signal gain spectra and linear phase-mismatch at pump wavelength λ = 1550 nm for different pump power P = 1, 2 and 3 W. The fiber length is 25 cm.

Fig. 5
Fig. 5

The signal gain spectra at pump wavelength λ = 1700 nm, L = 25 cm and pump power changes from 1 to 4W. These spectra are obtained from Fig. 4(a), 4(c) and 4(e).

Fig. 6
Fig. 6

The optical signal gain spectrum under the condition that γ is equal to 640 W−1km−1 at the pump wavelength λ = 1550 nm, L = 50 cm and P = 1 W.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A p z =iγ[( | A p | 2 +2( | A i | 2 + | A s | 2 )) A p +2 A i A s A * p exp(iΔβz)]
A s z =iγ[( | A s | 2 +2( | A p | 2 + | A i | 2 )) A s + A 2 p A * i exp(iΔβz)]
A i z =iγ[( | A i | 2 +2( | A p | 2 + | A s | 2 )) A i + A 2 p A * s exp(iΔβz)]
2 ω p = ω i + ω s
κ=Δβ+2γP=0
Δβ= β i + β s 2 β p = n eff ( ω i ) ω i c + n eff ( ω s ) ω s c 2 n eff ( ω p ) ω p c
Δβ β 2 (Δω) 2 + 1 12 β 4 (Δω) 4
G s = P s (L) P s (0) =1+ ( γP g ) 2 sin h 2 (gL)
g= (γP) 2 ( κ 2 ) 2 = (γP) 2 (γP+ Δβ 2 ) 2
(γP) 2 ( κ 2 ) 2 <0
g=i ( κ 2 ) 2 (γP) 2 =i g i
G s =1+ ( γP g i ) 2 sin 2 ( g i L)

Metrics