Abstract

Incorporating the temporal carrier technique with common-path spectral interferometry, we have successfully demonstrated an advanced surface plasmon resonance (SPR) biosensing system which achieves refractive index resolution (RIR) up to 2 × 10−8 refractive index unit (RIU) over a wide dynamic range of 3 × 10−2 RIU. While this is accomplished by optimizing the SPR differential phase sensing conditions with just a layer of gold, we managed to address the spectral phase discontinuity with a novel spectral-temporal phase measurement scheme. As the new optical setup supersedes its Michelson counterpart in term of simplicity, we believe that it is a significant contribution for practical SPR sensing applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. Ng, C. M. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing,” Biosens. Bioelectron.26(4), 1593–1598 (2010).
    [CrossRef] [PubMed]
  2. S. P. Ng, C. M. L. Wu, S. Y. Wu, and H. P. Ho, “White-light spectral interferometry for surface plasmon resonance sensing applications,” Opt. Express19(5), 4521–4527 (2011).
    [CrossRef] [PubMed]
  3. C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem.92(1-2), 133–136 (2003).
    [CrossRef]
  4. I. R. Hooper and J. R. Sambles, “Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators,” Appl. Phys. Lett.85(15), 3017–3019 (2004).
    [CrossRef]
  5. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express17(23), 21191–21204 (2009).
    [CrossRef] [PubMed]
  6. Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem.80(14), 5590–5595 (2008).
    [CrossRef] [PubMed]
  7. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett.29(20), 2378–2380 (2004).
    [CrossRef] [PubMed]
  8. H. P. Chiang, J. L. Lin, and Z. W. Chen, “Highly sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths,” Appl. Phys. Lett.88(14), 141105 (2006).
    [CrossRef]
  9. Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol.2012, 471957 (2012). http://dx.doi.org/10.1155/2012/471957
  10. D. R. Burton, A. J. Goodall, J. T. Atkinson, and M. J. Lalor, “The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry,” Opt. Lasers Eng.23(4), 245–257 (1995).
    [CrossRef]
  11. H. O. Saldner and J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt.36(13), 2770–2775 (1997).
    [CrossRef] [PubMed]
  12. S. P. Ng, S. Y. Wu, H. P. Ho, and C. M. L. Wu, “A white-light interferometric surface plasmon resonance sensor with wide dynamic range and phase-sensitive response,” IEEE International Conference on Electron Devices and Solid-State Circuits, December 2008, HKSAR.
    [CrossRef]
  13. J. Homola, “Electromagnetic theory of surface plasmons,” in Springer Series on Chemical Sensors and Biosensors 4, O. S. Wolfbeis serial eds. (Springer-Verlag, 2006), pp. 3–44.
  14. http://www.schott.com/advanced_optics/english/download/index.html
  15. M. J. Weber, ed., Handbook of Optical Materials (CRC Press, 2003).
  16. D. R. Lide, ed., CRC Handbook of Chemistry and Physics 90th Edition (CRC Press, 2009–2010)

2012

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol.2012, 471957 (2012). http://dx.doi.org/10.1155/2012/471957

2011

2010

S. P. Ng, C. M. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing,” Biosens. Bioelectron.26(4), 1593–1598 (2010).
[CrossRef] [PubMed]

2009

2008

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem.80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

2006

H. P. Chiang, J. L. Lin, and Z. W. Chen, “Highly sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths,” Appl. Phys. Lett.88(14), 141105 (2006).
[CrossRef]

2004

I. R. Hooper and J. R. Sambles, “Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators,” Appl. Phys. Lett.85(15), 3017–3019 (2004).
[CrossRef]

S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett.29(20), 2378–2380 (2004).
[CrossRef] [PubMed]

2003

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem.92(1-2), 133–136 (2003).
[CrossRef]

1997

1995

D. R. Burton, A. J. Goodall, J. T. Atkinson, and M. J. Lalor, “The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry,” Opt. Lasers Eng.23(4), 245–257 (1995).
[CrossRef]

Atkinson, J. T.

D. R. Burton, A. J. Goodall, J. T. Atkinson, and M. J. Lalor, “The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry,” Opt. Lasers Eng.23(4), 245–257 (1995).
[CrossRef]

Burton, D. R.

D. R. Burton, A. J. Goodall, J. T. Atkinson, and M. J. Lalor, “The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry,” Opt. Lasers Eng.23(4), 245–257 (1995).
[CrossRef]

Chang, L. B.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem.92(1-2), 133–136 (2003).
[CrossRef]

Chang, Y. F.

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem.80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

Chen, Z. W.

H. P. Chiang, J. L. Lin, and Z. W. Chen, “Highly sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths,” Appl. Phys. Lett.88(14), 141105 (2006).
[CrossRef]

Chiang, H. P.

H. P. Chiang, J. L. Lin, and Z. W. Chen, “Highly sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths,” Appl. Phys. Lett.88(14), 141105 (2006).
[CrossRef]

Chou, C.

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem.80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

Goodall, A. J.

D. R. Burton, A. J. Goodall, J. T. Atkinson, and M. J. Lalor, “The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry,” Opt. Lasers Eng.23(4), 245–257 (1995).
[CrossRef]

Grigorenko, A. N.

Ho, H. P.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol.2012, 471957 (2012). http://dx.doi.org/10.1155/2012/471957

S. P. Ng, C. M. L. Wu, S. Y. Wu, and H. P. Ho, “White-light spectral interferometry for surface plasmon resonance sensing applications,” Opt. Express19(5), 4521–4527 (2011).
[CrossRef] [PubMed]

S. P. Ng, C. M. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing,” Biosens. Bioelectron.26(4), 1593–1598 (2010).
[CrossRef] [PubMed]

S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett.29(20), 2378–2380 (2004).
[CrossRef] [PubMed]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, “Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators,” Appl. Phys. Lett.85(15), 3017–3019 (2004).
[CrossRef]

Huang, Y. H.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol.2012, 471957 (2012). http://dx.doi.org/10.1155/2012/471957

Huntley, J. M.

Jian, Z. C.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem.92(1-2), 133–136 (2003).
[CrossRef]

Joe, S. F.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem.92(1-2), 133–136 (2003).
[CrossRef]

Kabashin, A. V.

Kong, S. K.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol.2012, 471957 (2012). http://dx.doi.org/10.1155/2012/471957

S. P. Ng, C. M. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing,” Biosens. Bioelectron.26(4), 1593–1598 (2010).
[CrossRef] [PubMed]

S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett.29(20), 2378–2380 (2004).
[CrossRef] [PubMed]

Lalor, M. J.

D. R. Burton, A. J. Goodall, J. T. Atkinson, and M. J. Lalor, “The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry,” Opt. Lasers Eng.23(4), 245–257 (1995).
[CrossRef]

Law, W. C.

Li, Y. C.

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem.80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

Lin, C.

Lin, J. L.

H. P. Chiang, J. L. Lin, and Z. W. Chen, “Highly sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths,” Appl. Phys. Lett.88(14), 141105 (2006).
[CrossRef]

Ng, S. P.

S. P. Ng, C. M. L. Wu, S. Y. Wu, and H. P. Ho, “White-light spectral interferometry for surface plasmon resonance sensing applications,” Opt. Express19(5), 4521–4527 (2011).
[CrossRef] [PubMed]

S. P. Ng, C. M. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing,” Biosens. Bioelectron.26(4), 1593–1598 (2010).
[CrossRef] [PubMed]

Patskovsky, S.

Saldner, H. O.

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators,” Appl. Phys. Lett.85(15), 3017–3019 (2004).
[CrossRef]

Su, L. C.

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem.80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

Wu, C. M.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem.92(1-2), 133–136 (2003).
[CrossRef]

Wu, C. M. L.

S. P. Ng, C. M. L. Wu, S. Y. Wu, and H. P. Ho, “White-light spectral interferometry for surface plasmon resonance sensing applications,” Opt. Express19(5), 4521–4527 (2011).
[CrossRef] [PubMed]

S. P. Ng, C. M. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing,” Biosens. Bioelectron.26(4), 1593–1598 (2010).
[CrossRef] [PubMed]

Wu, S. Y.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol.2012, 471957 (2012). http://dx.doi.org/10.1155/2012/471957

S. P. Ng, C. M. L. Wu, S. Y. Wu, and H. P. Ho, “White-light spectral interferometry for surface plasmon resonance sensing applications,” Opt. Express19(5), 4521–4527 (2011).
[CrossRef] [PubMed]

S. P. Ng, C. M. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing,” Biosens. Bioelectron.26(4), 1593–1598 (2010).
[CrossRef] [PubMed]

S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett.29(20), 2378–2380 (2004).
[CrossRef] [PubMed]

Adv. Opt. Technol.

Y. H. Huang, H. P. Ho, S. Y. Wu, and S. K. Kong, “Detecting phase shifts in surface plasmon resonance: a review,” Adv. Opt. Technol.2012, 471957 (2012). http://dx.doi.org/10.1155/2012/471957

Anal. Chem.

Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, “Differential-phase surface plasmon resonance biosensor,” Anal. Chem.80(14), 5590–5595 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

I. R. Hooper and J. R. Sambles, “Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators,” Appl. Phys. Lett.85(15), 3017–3019 (2004).
[CrossRef]

H. P. Chiang, J. L. Lin, and Z. W. Chen, “Highly sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths,” Appl. Phys. Lett.88(14), 141105 (2006).
[CrossRef]

Biosens. Bioelectron.

S. P. Ng, C. M. L. Wu, S. Y. Wu, H. P. Ho, and S. K. Kong, “Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing,” Biosens. Bioelectron.26(4), 1593–1598 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lasers Eng.

D. R. Burton, A. J. Goodall, J. T. Atkinson, and M. J. Lalor, “The use of carrier frequency shifting for the elimination of phase discontinuities in Fourier transform profilometry,” Opt. Lasers Eng.23(4), 245–257 (1995).
[CrossRef]

Opt. Lett.

Sens. Actuators B Chem.

C. M. Wu, Z. C. Jian, S. F. Joe, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem.92(1-2), 133–136 (2003).
[CrossRef]

Other

S. P. Ng, S. Y. Wu, H. P. Ho, and C. M. L. Wu, “A white-light interferometric surface plasmon resonance sensor with wide dynamic range and phase-sensitive response,” IEEE International Conference on Electron Devices and Solid-State Circuits, December 2008, HKSAR.
[CrossRef]

J. Homola, “Electromagnetic theory of surface plasmons,” in Springer Series on Chemical Sensors and Biosensors 4, O. S. Wolfbeis serial eds. (Springer-Verlag, 2006), pp. 3–44.

http://www.schott.com/advanced_optics/english/download/index.html

M. J. Weber, ed., Handbook of Optical Materials (CRC Press, 2003).

D. R. Lide, ed., CRC Handbook of Chemistry and Physics 90th Edition (CRC Press, 2009–2010)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Theoretical spectral phase response of a typical prism/gold/dielectric system with different gold thicknesses. The 51.6 nm gold layer produces the sharpest phase jump in comparison with those of 48.0 nm and 53.4 nm; (b) The theoretical refractive index resolution of the three layer system computed using parameters listed in Table 1 and the 51.6 nm gold produces the highest RIR.

Fig. 2
Fig. 2

Schematic of the common-path SPR spectral interferometer with the liquid crystal modulator which is synchronized with a prescribed sinusoidal reference signal to generate the temporal carrier and T.C. is the temperature controller.

Fig. 3
Fig. 3

(a) Experimental SPR spectral interferogram obtained with gold thickness of 52 ± 0.4 nm and 7% NaCl concentration, the reduced fringe visibility at the optimal wavelength about 668.0 nm is evident and the arrow indicates 668.6 nm with better signal; (b) Temporal waveform of 668.6 nm obtained with the carrier operating at 1 kHz; (c) With increment of the NaCl concentration by 0.1% to 7.1%, the temporal waveform shows phase shift; (d) After averaging and low-passed filtering, the reconstructed temporal waveform before and after 0.1% NaCl concentration change.

Fig. 4
Fig. 4

(a) Spectral interferograms of 7% and 19% sodium chloride solution shows that the optimal SPR coupling condition shifts towards infrared with increase of refractive index and our measurement range is able to follow the large RIU variation; (b) Estimated RIR of our system within the entire dynamic range of measurement.

Tables (1)

Tables Icon

Table 1 Parameters and materials used for numerical calculation of ultimate RIR.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

RIR= Δ RIU Δ Phase · St d Phase ,
I( λ,t )= I 0 ( λ,t ){ 1+ V SPR ( λ )cos[ ϕ OPD +2π f c G(t)+ ϕ SPR ( λ,t ) ] }+ I noise ( t ),

Metrics