Abstract

We show how a spatial mode can be extracted from a light beam, leaving the other orthogonal modes undisturbed, and allowing a new signal to be retransmitted on that mode. The method is self-aligning, avoids fundamental splitting losses, and uses only local feedback loops on controllable beam splitters and phase shifters. It could be implemented with Mach-Zehnder interferometers in planar optics. The method can be extended to multiple simultaneous mode extractions. As a spatial reconfigurable optical add-drop multiplexer, it is hitless, allowing reconfiguration without interrupting the transmission of any channel.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Zhu and B. Mukherjee, “Online connection provisioning in metro optical WDM networks using reconfigurable OADMs,” J. Lightwave Technol.23(10), 2893–2901 (2005).
    [CrossRef]
  2. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics7(5), 354–362 (2013).
    [CrossRef]
  3. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express19(17), 16665–16671 (2011).
    [CrossRef] [PubMed]
  4. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6x6 MIMO processing,” J. Lightwave Technol.30(4), 521–531 (2012).
    [CrossRef]
  5. H. Bülow, “Optical-mode demultiplexing by optical MIMO filtering of spatial samples,” IEEE Photon. Technol. Lett.24(12), 1045–1047 (2012).
    [CrossRef]
  6. H. Bülow, H. Al-Hashimi, and B. Schmauss, “Spatial mode multiplexers and MIMO processing,” Proc. 17th Opto-Electronics and Communications Conference 2012 (OECC 2012), 562–563 (2012).
    [CrossRef]
  7. N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” Photonics Technol. Lett.24(5), 344–346 (2012).
    [CrossRef]
  8. J. D. Love and N. Riesen, “Mode-selective couplers for few-mode optical fiber networks,” Opt. Lett.37(19), 3990–3992 (2012).
    [CrossRef] [PubMed]
  9. N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” IEEE J. Quantum Electron.48(7), 941–945 (2012).
    [CrossRef]
  10. T. Sakamoto, T. Mori, T. Yamamoto, N. Hanzawa, S. Tomita, F. Yamamoto, K. Saitoh, and M. Koshiba, “Mode-division multiplexing transmission system with DMD-independent low complexity MIMO processing,” J. Lightwave Technol.31(13), 2192–2199 (2013).
    [CrossRef]
  11. C. P. Tsekrekos and D. Syvridis, “All-fiber broadband LP02 mode converter for future wavelength and mode division multiplexing systems,” Photonics Technol. Lett.24(18), 1638–1641 (2012).
    [CrossRef]
  12. A. M. Bratkovsky, J. B. Khurgin, E. Ponizovskaya, W. V. Sorin, and M. R. T. Tan, “Mode division multiplexed (MDM) waveguide link scheme with cascaded Y-junctions,” Opt. Commun.309, 85–89 (2013).
    [CrossRef]
  13. K. H. Wagner, “Mode group demultiplexing and modal dispersion compensation using spatial-spectral holography,” IEEE Photonics Society Summer Topical Meetings, Space Division Multiplexing for Optical Communications, Kona, Hawaii, July 9, 2013, Paper MC4.2.
  14. A. M. J. Koonen, H.-S. Chen, H. P. A. van den Boom, and O. Raz, “Silicon photonic integrated mode multiplexer,” 2012 IEEE Photonics Society Summer Topical Meeting Series, Paper WC4.2, pp.240–241 (2102).
    [CrossRef]
  15. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Binary-phase spatial light filters for mode-selective excitation of multimode fibers,” J. Lightwave Technol.29(13), 1980–1987 (2011).
    [CrossRef]
  16. M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, and G. Charlet, “Mode-division multiplexing of 2 x 100 Gb/s channels using an LCOS-based spatial modulator,” J. Lightwave Technol.30(4), 618–623 (2012).
    [CrossRef]
  17. J. Carpenter and T. D. Wilkinson, “Characterization of multimode fiber by selective mode excitation,” J. Lightwave Technol.30(10), 1386–1392 (2012).
    [CrossRef]
  18. J. A. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Optical vortex based mode division multiplexing over graded-index multimode fibre,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), Paper OTh4G.3.
    [CrossRef]
  19. H. Chen and T. Koonen, “Single multi-mode mask for multi-channel mode division demultiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OTh1B.4.
    [CrossRef]
  20. E. Ip, M.-J. Li, W. Wood, J. Hu, and Y. Yano, “Temporal variations in the channel matrix in few-mode fiber recirculating loop transmission,” IEEE Photonics Society Summer Topical Meetings, Space Division Multiplexing for Optical Communications, Kona, Hawaii, July 9, 2013, Paper TuC2.3.
  21. B. Inan, B. Spinnler, F. Ferreira, D. van den Borne, A. Lobato, S. Adhikari, V. A. J. M. Sleiffer, M. Kuschnerov, N. Hanik, and S. L. Jansen, “DSP complexity of mode-division multiplexed receivers,” Opt. Express20(10), 10859–10869 (2012).
    [CrossRef] [PubMed]
  22. A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
    [CrossRef] [PubMed]
  23. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
    [CrossRef] [PubMed]
  24. G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett.105(15), 153601 (2010).
    [CrossRef] [PubMed]
  25. Y. Jiao, S. H. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator,” Opt. Lett.30(2), 141–143 (2005).
    [CrossRef] [PubMed]
  26. D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express21(5), 6360–6370 (2013).
    [CrossRef] [PubMed]
  27. D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res.1(1), 1–15 (2013).
    [CrossRef]
  28. D. A. B. Miller, “Establishing optimal wave communication channels automatically,” J. Lightwave Technol. (submitted to).
  29. D. Noordegraaf, P. M. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express17(3), 1988–1994 (2009).
    [CrossRef] [PubMed]
  30. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express19(6), 5698–5705 (2011).
    [CrossRef] [PubMed]
  31. N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express20(24), 27123–27132 (2012).
    [CrossRef] [PubMed]
  32. D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express20(21), 23985–23993 (2012).
    [CrossRef] [PubMed]
  33. D. A. B. Miller, “How complicated must an optical component be?” J. Opt. Soc. Am. A30(2), 238–251 (2013).
    [CrossRef] [PubMed]
  34. P. K. Dixon and L. Wu, “Broadband digital lock-in amplifier techniques,” Rev. Sci. Instrum.60(10), 3329–3336 (1989).
    [CrossRef]
  35. H. A. Haus, M. A. Popovic, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett.18(10), 1137–1139 (2006).
    [CrossRef]
  36. C. R. Doerr, “Proposed architecture for MIMO optical demultiplexing using photonic integration,” IEEE Photon. Technol. Lett.23(21), 1573–1575 (2011).
    [CrossRef]
  37. G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng.50(7), 071112 (2011).
    [CrossRef]

2013

2012

N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express20(24), 27123–27132 (2012).
[CrossRef] [PubMed]

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express20(21), 23985–23993 (2012).
[CrossRef] [PubMed]

M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, and G. Charlet, “Mode-division multiplexing of 2 x 100 Gb/s channels using an LCOS-based spatial modulator,” J. Lightwave Technol.30(4), 618–623 (2012).
[CrossRef]

J. Carpenter and T. D. Wilkinson, “Characterization of multimode fiber by selective mode excitation,” J. Lightwave Technol.30(10), 1386–1392 (2012).
[CrossRef]

B. Inan, B. Spinnler, F. Ferreira, D. van den Borne, A. Lobato, S. Adhikari, V. A. J. M. Sleiffer, M. Kuschnerov, N. Hanik, and S. L. Jansen, “DSP complexity of mode-division multiplexed receivers,” Opt. Express20(10), 10859–10869 (2012).
[CrossRef] [PubMed]

A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
[CrossRef] [PubMed]

C. P. Tsekrekos and D. Syvridis, “All-fiber broadband LP02 mode converter for future wavelength and mode division multiplexing systems,” Photonics Technol. Lett.24(18), 1638–1641 (2012).
[CrossRef]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6x6 MIMO processing,” J. Lightwave Technol.30(4), 521–531 (2012).
[CrossRef]

H. Bülow, “Optical-mode demultiplexing by optical MIMO filtering of spatial samples,” IEEE Photon. Technol. Lett.24(12), 1045–1047 (2012).
[CrossRef]

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” Photonics Technol. Lett.24(5), 344–346 (2012).
[CrossRef]

J. D. Love and N. Riesen, “Mode-selective couplers for few-mode optical fiber networks,” Opt. Lett.37(19), 3990–3992 (2012).
[CrossRef] [PubMed]

N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” IEEE J. Quantum Electron.48(7), 941–945 (2012).
[CrossRef]

2011

2010

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett.105(15), 153601 (2010).
[CrossRef] [PubMed]

2009

2006

H. A. Haus, M. A. Popovic, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett.18(10), 1137–1139 (2006).
[CrossRef]

2005

2002

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

1989

P. K. Dixon and L. Wu, “Broadband digital lock-in amplifier techniques,” Rev. Sci. Instrum.60(10), 3329–3336 (1989).
[CrossRef]

Adhikari, S.

Arkwright, J. W.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” Photonics Technol. Lett.24(5), 344–346 (2012).
[CrossRef]

Barnett, S. M.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

Beijersbergen, M. W.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett.105(15), 153601 (2010).
[CrossRef] [PubMed]

Berkhout, G. C. G.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett.105(15), 153601 (2010).
[CrossRef] [PubMed]

Bigo, S.

Bigot-Astruc, M.

Birks, T. A.

Bland-Hawthorn, J.

Bolle, C.

Boutin, A.

Bratkovsky, A. M.

A. M. Bratkovsky, J. B. Khurgin, E. Ponizovskaya, W. V. Sorin, and M. R. T. Tan, “Mode division multiplexed (MDM) waveguide link scheme with cascaded Y-junctions,” Opt. Commun.309, 85–89 (2013).
[CrossRef]

Brindel, P.

Bülow, H.

H. Bülow, “Optical-mode demultiplexing by optical MIMO filtering of spatial samples,” IEEE Photon. Technol. Lett.24(12), 1045–1047 (2012).
[CrossRef]

Burrows, E. C.

Carpenter, J.

Chandrasekhar, S.

Charlet, G.

Coppola, G.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng.50(7), 071112 (2011).
[CrossRef]

Courtial, J.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett.105(15), 153601 (2010).
[CrossRef] [PubMed]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

Dimarcello, F. V.

Dixon, P. K.

P. K. Dixon and L. Wu, “Broadband digital lock-in amplifier techniques,” Rev. Sci. Instrum.60(10), 3329–3336 (1989).
[CrossRef]

Doerr, C. R.

C. R. Doerr, “Proposed architecture for MIMO optical demultiplexing using photonic integration,” IEEE Photon. Technol. Lett.23(21), 1573–1575 (2011).
[CrossRef]

Esmaeelpour, M.

Essiambre, R.-J.

Fan, S. H.

Ferreira, F.

Fini, J. M.

Fishteyn, M.

Fontaine, N. K.

Franke-Arnold, S.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

Gnauck, A. H.

Hanik, N.

Hanzawa, N.

Haus, H. A.

H. A. Haus, M. A. Popovic, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett.18(10), 1137–1139 (2006).
[CrossRef]

Huang, H.

A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
[CrossRef] [PubMed]

Inan, B.

Iodice, M.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng.50(7), 071112 (2011).
[CrossRef]

Jansen, S. L.

Jiao, Y.

Kar, A. K.

Khurgin, J. B.

A. M. Bratkovsky, J. B. Khurgin, E. Ponizovskaya, W. V. Sorin, and M. R. T. Tan, “Mode division multiplexed (MDM) waveguide link scheme with cascaded Y-junctions,” Opt. Commun.309, 85–89 (2013).
[CrossRef]

Koebele, C.

Koshiba, M.

Kuschnerov, M.

Lavery, M. P. J.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett.105(15), 153601 (2010).
[CrossRef] [PubMed]

Leach, J.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

Leon-Saval, S. G.

Lingle, R.

Liu, X.

Lobato, A.

Love, J. D.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” Photonics Technol. Lett.24(5), 344–346 (2012).
[CrossRef]

J. D. Love and N. Riesen, “Mode-selective couplers for few-mode optical fiber networks,” Opt. Lett.37(19), 3990–3992 (2012).
[CrossRef] [PubMed]

N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” IEEE J. Quantum Electron.48(7), 941–945 (2012).
[CrossRef]

Maksymiuk, L.

Mardoyan, H.

McCurdy, A. H.

Miller, D. A. B.

Monberg, E. M.

Mori, T.

Mukherjee, B.

Mumtaz, S.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics7(5), 354–362 (2013).
[CrossRef]

Nielsen, M. D.

Noordegraaf, D.

Padgett, M. J.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett.105(15), 153601 (2010).
[CrossRef] [PubMed]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

Peckham, D. W.

Ponizovskaya, E.

A. M. Bratkovsky, J. B. Khurgin, E. Ponizovskaya, W. V. Sorin, and M. R. T. Tan, “Mode division multiplexed (MDM) waveguide link scheme with cascaded Y-junctions,” Opt. Commun.309, 85–89 (2013).
[CrossRef]

Popovic, M. A.

H. A. Haus, M. A. Popovic, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett.18(10), 1137–1139 (2006).
[CrossRef]

Provost, L.

Randel, S.

Rendina, I.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng.50(7), 071112 (2011).
[CrossRef]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics7(5), 354–362 (2013).
[CrossRef]

Riesen, N.

J. D. Love and N. Riesen, “Mode-selective couplers for few-mode optical fiber networks,” Opt. Lett.37(19), 3990–3992 (2012).
[CrossRef] [PubMed]

N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” IEEE J. Quantum Electron.48(7), 941–945 (2012).
[CrossRef]

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” Photonics Technol. Lett.24(5), 344–346 (2012).
[CrossRef]

Ryf, R.

Saitoh, K.

Sakamoto, T.

Salsi, M.

Sierra, A.

Sillard, P.

Sirleto, L.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng.50(7), 071112 (2011).
[CrossRef]

Siuzdak, J.

Skovgaard, P. M.

Sleiffer, V. A. J. M.

Sorin, W. V.

A. M. Bratkovsky, J. B. Khurgin, E. Ponizovskaya, W. V. Sorin, and M. R. T. Tan, “Mode division multiplexed (MDM) waveguide link scheme with cascaded Y-junctions,” Opt. Commun.309, 85–89 (2013).
[CrossRef]

Sperti, D.

Spinnler, B.

Stepniak, G.

Syvridis, D.

C. P. Tsekrekos and D. Syvridis, “All-fiber broadband LP02 mode converter for future wavelength and mode division multiplexing systems,” Photonics Technol. Lett.24(18), 1638–1641 (2012).
[CrossRef]

Tan, M. R. T.

A. M. Bratkovsky, J. B. Khurgin, E. Ponizovskaya, W. V. Sorin, and M. R. T. Tan, “Mode division multiplexed (MDM) waveguide link scheme with cascaded Y-junctions,” Opt. Commun.309, 85–89 (2013).
[CrossRef]

Taunay, T. F.

Thomson, R. R.

Tomita, S.

Tran, P.

Tsekrekos, C. P.

C. P. Tsekrekos and D. Syvridis, “All-fiber broadband LP02 mode converter for future wavelength and mode division multiplexing systems,” Photonics Technol. Lett.24(18), 1638–1641 (2012).
[CrossRef]

van den Borne, D.

Verluise, F.

Wang, J.

A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
[CrossRef] [PubMed]

Watts, M. R.

H. A. Haus, M. A. Popovic, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett.18(10), 1137–1139 (2006).
[CrossRef]

Wilkinson, T. D.

Willner, A. E.

A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
[CrossRef] [PubMed]

Winzer, P. J.

Wu, L.

P. K. Dixon and L. Wu, “Broadband digital lock-in amplifier techniques,” Rev. Sci. Instrum.60(10), 3329–3336 (1989).
[CrossRef]

Yamamoto, F.

Yamamoto, T.

Yan, M. F.

Zhu, B.

Zhu, H. Y.

IEEE J. Quantum Electron.

N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” IEEE J. Quantum Electron.48(7), 941–945 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Bülow, “Optical-mode demultiplexing by optical MIMO filtering of spatial samples,” IEEE Photon. Technol. Lett.24(12), 1045–1047 (2012).
[CrossRef]

H. A. Haus, M. A. Popovic, and M. R. Watts, “Broadband hitless bypass switch for integrated photonic circuits,” IEEE Photon. Technol. Lett.18(10), 1137–1139 (2006).
[CrossRef]

C. R. Doerr, “Proposed architecture for MIMO optical demultiplexing using photonic integration,” IEEE Photon. Technol. Lett.23(21), 1573–1575 (2011).
[CrossRef]

J. Lightwave Technol.

D. A. B. Miller, “Establishing optimal wave communication channels automatically,” J. Lightwave Technol. (submitted to).

H. Y. Zhu and B. Mukherjee, “Online connection provisioning in metro optical WDM networks using reconfigurable OADMs,” J. Lightwave Technol.23(10), 2893–2901 (2005).
[CrossRef]

T. Sakamoto, T. Mori, T. Yamamoto, N. Hanzawa, S. Tomita, F. Yamamoto, K. Saitoh, and M. Koshiba, “Mode-division multiplexing transmission system with DMD-independent low complexity MIMO processing,” J. Lightwave Technol.31(13), 2192–2199 (2013).
[CrossRef]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6x6 MIMO processing,” J. Lightwave Technol.30(4), 521–531 (2012).
[CrossRef]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Binary-phase spatial light filters for mode-selective excitation of multimode fibers,” J. Lightwave Technol.29(13), 1980–1987 (2011).
[CrossRef]

M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, and G. Charlet, “Mode-division multiplexing of 2 x 100 Gb/s channels using an LCOS-based spatial modulator,” J. Lightwave Technol.30(4), 618–623 (2012).
[CrossRef]

J. Carpenter and T. D. Wilkinson, “Characterization of multimode fiber by selective mode excitation,” J. Lightwave Technol.30(10), 1386–1392 (2012).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Photonics

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space division multiplexing in optical fibers,” Nat. Photonics7(5), 354–362 (2013).
[CrossRef]

Opt. Commun.

A. M. Bratkovsky, J. B. Khurgin, E. Ponizovskaya, W. V. Sorin, and M. R. T. Tan, “Mode division multiplexed (MDM) waveguide link scheme with cascaded Y-junctions,” Opt. Commun.309, 85–89 (2013).
[CrossRef]

Opt. Eng.

G. Coppola, L. Sirleto, I. Rendina, and M. Iodice, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng.50(7), 071112 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Res.

Photonics Technol. Lett.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-mode elliptical-core fiber data transmission,” Photonics Technol. Lett.24(5), 344–346 (2012).
[CrossRef]

C. P. Tsekrekos and D. Syvridis, “All-fiber broadband LP02 mode converter for future wavelength and mode division multiplexing systems,” Photonics Technol. Lett.24(18), 1638–1641 (2012).
[CrossRef]

Phys. Rev. Lett.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett.105(15), 153601 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

P. K. Dixon and L. Wu, “Broadband digital lock-in amplifier techniques,” Rev. Sci. Instrum.60(10), 3329–3336 (1989).
[CrossRef]

Science

A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
[CrossRef] [PubMed]

Other

K. H. Wagner, “Mode group demultiplexing and modal dispersion compensation using spatial-spectral holography,” IEEE Photonics Society Summer Topical Meetings, Space Division Multiplexing for Optical Communications, Kona, Hawaii, July 9, 2013, Paper MC4.2.

A. M. J. Koonen, H.-S. Chen, H. P. A. van den Boom, and O. Raz, “Silicon photonic integrated mode multiplexer,” 2012 IEEE Photonics Society Summer Topical Meeting Series, Paper WC4.2, pp.240–241 (2102).
[CrossRef]

J. A. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Optical vortex based mode division multiplexing over graded-index multimode fibre,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2013), Paper OTh4G.3.
[CrossRef]

H. Chen and T. Koonen, “Single multi-mode mask for multi-channel mode division demultiplexing,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OTh1B.4.
[CrossRef]

E. Ip, M.-J. Li, W. Wood, J. Hu, and Y. Yano, “Temporal variations in the channel matrix in few-mode fiber recirculating loop transmission,” IEEE Photonics Society Summer Topical Meetings, Space Division Multiplexing for Optical Communications, Kona, Hawaii, July 9, 2013, Paper TuC2.3.

H. Bülow, H. Al-Hashimi, and B. Schmauss, “Spatial mode multiplexers and MIMO processing,” Proc. 17th Opto-Electronics and Communications Conference 2012 (OECC 2012), 562–563 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spatial reconfigurable add-drop multiplexer (SRADM). (a) The Mach-Zehnder interferometers MI1 – MI4 are set by minimization using the signals from the mostly-transparent detectors D1 – D3 to route the spatial mode of interest (the add-drop mode) to receiver R1, and the Mach-Zehnder interferometers MO1 – MO4 are set to the same “reflectivities” (split ratios) and opposite phase shifts compared to MI1 – MI4. Then, all the add-drop beam input signal goes to receiver R1, all other orthogonal beams pass through the system, and a new beam launched from transmitter T1 takes on the same spatial mode as the add-drop mode at the output. MI4 and MO4 are operated only as phase shifters so the greyed-out lower arm is optional and included only for path symmetry. (b) Conceptual planar layout with input and output grating coupler arrays, with equalized waveguide lengths in all paths. (c) Perspective view with input and output beams.

Fig. 2
Fig. 2

Device as in Fig. 1(a) but with added dummy MZIs (the devices in grey, without specific labels), set in their “bar” state and with a standard phase shift, for greater equality of loss and path length.

Fig. 3
Fig. 3

Bypass switching. Additional waveguide switches, here implemented using MZIs ML1 and MR1, can be used to connect waveguide WA1(I) directly to WA1(O), bypassing the receiver R1 and transmitter T1.

Fig. 4
Fig. 4

Simplified device using only a self-aligned mode coupler configuration [26] with added “through” waveguides and mostly-transparent detectors. We could also add dummy MZIs as in the left side of Fig. 2 so all paths have equal numbers of MZIs for loss and path length equality.

Fig. 5
Fig. 5

Universal SRADM device configuration that allows add-drop of any number or combination of the channels as well as hitless switching operation. Receivers (R1 – R4), transmitters (T1 – T4), and pairs of bypass switches (ML1 & MR1 – ML4 & MR4) have been inserted in each path, and additional diagonal rows of detectors and MZIs have been added to allow simultaneous separation of multiple modes. The devices on the right are set to the same “reflectivities” but opposite phase delays compared to their corresponding devices on the left.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

u 24 = t I4 t I3 t I2 r I1 exp[ i( ϕ I4 + ϕ I3 + ϕ I2 + ϕ I1 ) ]
v 42 = t I4 t I3 t I2 r I1 exp[ i( ϕ I4 + ϕ I3 + ϕ I2 + ϕ I1 ) ]= u 24

Metrics