Abstract

A hybrid III-V/silicon laser design with a metal grating layer inserted in between is proposed and numerically studied. The metal grating layer is buried in a silicon ridge waveguide surrounded by silicon dioxide, and its structural parameters such as periodicity, width and depth can be varied for optimization purpose. The plasmonic effect originated from the grating layer can manage optical fields between III-V and silicon layers in hopes of dimension reduction. The substrate is planarized to minimize the bonding failure. A numerical algorithm with various combinations of metal grating and waveguide structural parameters was created and the optimal design with 730 nm grating period and 600 nm of buried waveguide ridge height was obtained by minimizing the corresponding laser threshold. With top AlInGaAs quantum wells and optimized design of hybrid metal/silicon waveguide, a 0.6 μm−1 threshold gain can be achieved.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
    [CrossRef] [PubMed]
  2. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express15(2), 660–668 (2007).
    [CrossRef] [PubMed]
  3. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
    [CrossRef]
  4. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12(21), 5269–5273 (2004).
    [CrossRef] [PubMed]
  5. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A74(5), 051802 (2006).
    [CrossRef]
  6. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  7. R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
    [CrossRef]
  8. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  9. A. J. Zilkie, P. Seddighian, B. J. Bijlani, W. Qian, D. C. Lee, S. Fathololoumi, J. Fong, R. Shafiiha, D. Feng, B. J. Luff, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Power-efficient III-V/Silicon external cavity DBR lasers,” Opt. Express20(21), 23456–23462 (2012).
    [CrossRef] [PubMed]
  10. A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express16(7), 4413–4419 (2008).
    [CrossRef] [PubMed]
  11. X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett.34(9), 1345–1347 (2009).
    [CrossRef] [PubMed]
  12. D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid Integrated Platforms for Silicon Photonics,” Materials3(3), 1782–1802 (2010).
    [CrossRef]
  13. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett.35(5), 679–681 (2010).
    [CrossRef] [PubMed]
  14. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  15. D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quant.8(1), 118–131 (2002).
    [CrossRef]
  16. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
    [CrossRef]
  17. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, “Modal gain, modal loss, and confinement factors,” in Diode Lasers and Photonic Integrated Circuits, K. Chang, ed. (John Wiley & Sons, 2012).
  18. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, “Optical properties of materials, nonlinear optics, quatum optics” in Handbook of Optics third edition, (McGraw-Hill Professional, New York, 2009).
  19. H. Dejun, “Refractive index of AlInGaAs layers in the transparent wavelength region,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting (1994), vol. 2 pp. 349–350.
  20. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun.163(1-3), 95–102 (1999).
    [CrossRef]
  21. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt.34(22), 4755–4767 (1995).
    [CrossRef] [PubMed]
  22. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21(12), 2442–2446 (2004).
    [CrossRef] [PubMed]
  23. G. Veronic and S. Fan, “Modes of Subwavelength Plasmonic Slot Waveguides,” J. Lightwave Technol.25(9), 2511–2521 (2007).
    [CrossRef]
  24. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
    [CrossRef] [PubMed]
  25. A. Polyakov, M. Zolotorev, P. J. Schuck, and H. A. Padmore, “Collective behavior of impedance matched plasmonic nanocavities,” Opt. Express20(7), 7685–7693 (2012).
    [CrossRef] [PubMed]
  26. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008).
    [CrossRef] [PubMed]
  27. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
    [CrossRef]
  28. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
    [CrossRef] [PubMed]
  29. J. B. Laskey, C. L. Shieh, X. Huang, G. Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett.48(1), 78–80 (1986).
    [CrossRef]
  30. C. C. Lee and G. S. Matijasevic, “Highly reliable die attachment on polished GaAs surfaces using gold-tin eutectic alloy,” IEEE T. Compon. Hybr.12(3), 406–409 (2005).
    [CrossRef]

2012 (2)

2011 (1)

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

2010 (4)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid Integrated Platforms for Silicon Photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett.35(5), 679–681 (2010).
[CrossRef] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (4)

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008).
[CrossRef] [PubMed]

A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express16(7), 4413–4419 (2008).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

2007 (2)

2006 (3)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A74(5), 051802 (2006).
[CrossRef]

2005 (2)

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
[CrossRef] [PubMed]

C. C. Lee and G. S. Matijasevic, “Highly reliable die attachment on polished GaAs surfaces using gold-tin eutectic alloy,” IEEE T. Compon. Hybr.12(3), 406–409 (2005).
[CrossRef]

2004 (2)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quant.8(1), 118–131 (2002).
[CrossRef]

2000 (1)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

1999 (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun.163(1-3), 95–102 (1999).
[CrossRef]

1995 (1)

1986 (1)

J. B. Laskey, C. L. Shieh, X. Huang, G. Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett.48(1), 78–80 (1986).
[CrossRef]

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Asghari, M.

Atwater, H. A.

Baets, R.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid Integrated Platforms for Silicon Photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bijlani, B. J.

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Bondarenko, O.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Bowers, J. E.

Boyraz, O.

Brongersma, M. L.

Camacho-Aguilera, R.

Catrysse, P. B.

Chang-Hasnain, C.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Chen, R.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Chetrit, Y.

Chuang, L. C.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Ciftcioglu, B.

Cohen, O.

Cunningham, J. E.

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Dejun, H.

H. Dejun, “Refractive index of AlInGaAs layers in the transparent wavelength region,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting (1994), vol. 2 pp. 349–350.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Diest, K. A.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Fainman, Y.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008).
[CrossRef] [PubMed]

Fan, S.

Fang, A. W.

Fathololoumi, S.

Feng, D.

Feng, L.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008).
[CrossRef] [PubMed]

Fong, J.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Ghaffari, A.

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun.163(1-3), 95–102 (1999).
[CrossRef]

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Hjort, K.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quant.8(1), 118–131 (2002).
[CrossRef]

Huang, X.

J. B. Laskey, C. L. Shieh, X. Huang, G. Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett.48(1), 78–80 (1986).
[CrossRef]

Izhaky, N.

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Jalali, B.

Jones, R.

Kalkman, J.

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A74(5), 051802 (2006).
[CrossRef]

Kimerling, L. C.

Kippenberg, T. J.

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A74(5), 051802 (2006).
[CrossRef]

Ko, W. S.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Krishnamoorthy, A. V.

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Kuo, Y. H.

Lakhani, A.

Laskey, J. B.

J. B. Laskey, C. L. Shieh, X. Huang, G. Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett.48(1), 78–80 (1986).
[CrossRef]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Lee, C. C.

C. C. Lee and G. S. Matijasevic, “Highly reliable die attachment on polished GaAs surfaces using gold-tin eutectic alloy,” IEEE T. Compon. Hybr.12(3), 406–409 (2005).
[CrossRef]

Lee, D. C.

Liang, D.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid Integrated Platforms for Silicon Photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express16(7), 4413–4419 (2008).
[CrossRef] [PubMed]

Liao, L.

Lin, C. C.

J. B. Laskey, C. L. Shieh, X. Huang, G. Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett.48(1), 78–80 (1986).
[CrossRef]

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Liu, A.

Liu, G.

J. B. Laskey, C. L. Shieh, X. Huang, G. Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett.48(1), 78–80 (1986).
[CrossRef]

Liu, J.

Lively, E.

Lomakin, V.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008).
[CrossRef] [PubMed]

Luff, B. J.

Matijasevic, G. S.

C. C. Lee and G. S. Matijasevic, “Highly reliable die attachment on polished GaAs surfaces using gold-tin eutectic alloy,” IEEE T. Compon. Hybr.12(3), 406–409 (2005).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Michel, J.

Mizrahi, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008).
[CrossRef] [PubMed]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Murty, M. V. R.

J. B. Laskey, C. L. Shieh, X. Huang, G. Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett.48(1), 78–80 (1986).
[CrossRef]

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008).
[CrossRef] [PubMed]

Ng, K. W.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Nguyen, H.

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Padmore, H. A.

Paniccia, M.

Paniccia, M. J.

Park, H.

Pasquariello, D.

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quant.8(1), 118–131 (2002).
[CrossRef]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Polman, A.

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A74(5), 051802 (2006).
[CrossRef]

Polyakov, A.

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Qian, W.

Rakic, A. D.

Roelkens, G.

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid Integrated Platforms for Silicon Photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

Rubin, D.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Scherer, A.

Schuck, P. J.

Seddighian, P.

Sedgwick, F. G.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Selker, M. D.

Shafiiha, R.

Shearn, M. J.

Shieh, C. L.

J. B. Laskey, C. L. Shieh, X. Huang, G. Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett.48(1), 78–80 (1986).
[CrossRef]

Simic, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Slutsky, B.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Slutsky, B. A.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Sun, X.

Tran, T. T. D.

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A74(5), 051802 (2006).
[CrossRef]

Veronic, G.

Veronis, G.

Wu, M. C.

Xu, D. X.

J. B. Laskey, C. L. Shieh, X. Huang, G. Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett.48(1), 78–80 (1986).
[CrossRef]

Yariv, A.

Yu, K.

Zadok, A.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Zheng, X.

Zia, R.

Zilkie, A. J.

Zolotorev, M.

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. B. Laskey, C. L. Shieh, X. Huang, G. Liu, M. V. R. Murty, C. C. Lin, and D. X. Xu, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett.48(1), 78–80 (1986).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

D. Pasquariello and K. Hjort, “Plasma-assisted InP-to-Si low temperature wafer bonding,” IEEE J. Sel. Top. Quant.8(1), 118–131 (2002).
[CrossRef]

IEEE T. Compon. Hybr. (1)

C. C. Lee and G. S. Matijasevic, “Highly reliable die attachment on polished GaAs surfaces using gold-tin eutectic alloy,” IEEE T. Compon. Hybr.12(3), 406–409 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Materials (1)

D. Liang, G. Roelkens, R. Baets, and J. E. Bowers, “Hybrid Integrated Platforms for Silicon Photonics,” Materials3(3), 1782–1802 (2010).
[CrossRef]

Nat. Photonics (4)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

R. Chen, T. T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics5(3), 170–175 (2011).
[CrossRef]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010).
[CrossRef]

Nature (3)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature408(6811), 440–444 (2000).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun.163(1-3), 95–102 (1999).
[CrossRef]

Opt. Express (7)

Opt. Lett. (4)

Phys. Rev. A (1)

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A74(5), 051802 (2006).
[CrossRef]

Other (3)

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, “Modal gain, modal loss, and confinement factors,” in Diode Lasers and Photonic Integrated Circuits, K. Chang, ed. (John Wiley & Sons, 2012).

M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, “Optical properties of materials, nonlinear optics, quatum optics” in Handbook of Optics third edition, (McGraw-Hill Professional, New York, 2009).

H. Dejun, “Refractive index of AlInGaAs layers in the transparent wavelength region,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting (1994), vol. 2 pp. 349–350.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The normalized energy density distributions for the directly bonded III-V/silicon device with (a) 2.5 μm-, (b) 1.0 μm- and (c) 0.3 μm-wide silicon waveguide. All cases are calculated without metal grids in between III-V and silicon chips.

Fig. 2
Fig. 2

The schematics of plasmonic hybrid III-V/Si evanescent lasers. (a) The final device (b) The proposed process flow.

Fig. 3
Fig. 3

The schematic of simulation models viewed from (a) the cross-section and (b) the side of the device.

Fig. 4
Fig. 4

(a) The real part and (b) imaginary part of effective refractive index of the device with different ridge height and Al grating depth. The inset shown in the (a) describes the definition of simulation parameters.

Fig. 5
Fig. 5

(a) The silicon waveguide (WG) and (b) the quantum well (QW) power confinement with various ridge heights and Al grating depths. (c) the calculated threshold gain of the device. (d) the corresponding structure schematic to the simulated normalized energy density distribution results with (e) 0.3 μm-, (f) 0.6 μm- and (g) 0.9 μm-high ridge.

Fig. 6
Fig. 6

(a) The real part and imaginary part of effective refractive index with various Al grating depths and widths. Different widths of Al gratings (0.1, 0.2 or 0.3 μm) do not change the shape of the curve, only the relative magnitude of refractive indices. (b) The silicon waveguide (in black color) and the quantum well (in blue color) power confinement. (c) the calculated threshold gain of the device. (d)-(g): the normalized energy density distributions of the device with different grating depths: (d) 0.1 μm-, (e) 0.2 μm-, (f) 0.3 μm-, and (g) 0.55 μm. The corresponding gth is marked in Fig. 6(c).

Fig. 7
Fig. 7

(a) The silicon waveguide (WG) and the quantum well (QW) power confinement factor of the device with period from 0.1 μm to 3μm. (b) the calculated threshold gain of the device. The corresponding normalized energy density distribution with the grating period at (c) 0.29μm, (d) 0.5 μm, (e) 0.73 μm, (f) 0.87 μm, (g) 0.93 μm and (h) 1.21 μm, which are labeled in the (b) via red circles.

Tables (2)

Tables Icon

Table 1 The Refractive Index of Materials in Simulation Models

Tables Icon

Table 2 Optimized Structural Parameters of a Nano-scale Plasmonic Hybrid Laser

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g th = 1 Γ QW ×( n eff (r) n QW )×[ 4π n eff (i) λ + ln( 1 R 2 ) 2 ]
Γ QW/WG = QW/WG | E | 2 dxdydz / Total | E | 2 dxdydz

Metrics