Abstract

A new method to obtain a narrow and symmetrical far field from a high-pulse-energy optical parametric oscillator (OPO) with a linear resonator has been tested. The OPO employs two identical nonlinear crystals that are cut for type II phase matching, rotated such that their walk-off planes are orthogonal, and separated by a broadband half-wave plate. The OPO has a simple geometry, can be double-pass pumped, is wavelength tunable and operates stably with high conversion efficiency. The method has been demonstrated in a KTP-based OPO pumped at 1064 nm and a BBO-based OPO pumped at 532 nm, with output pulse energies up to 60 mJ and 75 mJ, respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Rustad, G. Arisholm, and Ø. Farsund, “Effect of idler absorption in pulsed optical parametric oscillators,” Opt. Express19(3), 2815–2830 (2011).
    [CrossRef] [PubMed]
  2. C. D. Nabors and G. Frangineas, “Optical parametric oscillator with bi-noncolinear, porro prism cavity,” in Advanced Solid State Lasers, OSA Trends in Optics and Photonics, Vol. 10, (Optical Society of America, Orlando, FL, 1997), 90–93.
  3. A. V. Smith and M. S. Bowers, “Image-rotating cavity designs for improved beam quality in nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B18(5), 706–713 (2001).
    [CrossRef]
  4. D. J. Armstrong and A. V. Smith, “Demonstration of improved beam quality in an image-rotating optical parametric oscillator,” Opt. Lett.27(1), 40–42 (2002).
    [CrossRef] [PubMed]
  5. O. Farsund, G. Arisholm, and G. Rustad, “Improved beam quality from a high energy optical parametric oscillator using crystals with orthogonal critical planes,” Opt. Express18(9), 9229–9235 (2010).
    [CrossRef] [PubMed]
  6. W. J. Alford, R. J. Gehr, R. L. Schmitt, A. V. Smith, and G. Arisholm, “Beam tilt and angular dispersion in broad-bandwidth, nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B16(9), 1525–1532 (1999).
    [CrossRef]
  7. G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B14(10), 2543–2549 (1997).
    [CrossRef]
  8. G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” Proc. SPIE3685, 86–97 (1999).
    [CrossRef]
  9. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, Mechanical, and Thermal-Properties of Barium Borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
    [CrossRef]
  10. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, “Parametric amplification and oscillation with walkoff-compensating crystals,” J. Opt. Soc. Am. B14(2), 460–474 (1997).
    [CrossRef]
  11. M. Kaucikas, M. Warren, A. Michailovas, R. Antanavicius, and J. J. van Thor, “Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals,” Laser Phys.23(2), 025401 (2013).
    [CrossRef]

2013 (1)

M. Kaucikas, M. Warren, A. Michailovas, R. Antanavicius, and J. J. van Thor, “Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals,” Laser Phys.23(2), 025401 (2013).
[CrossRef]

2011 (1)

2010 (1)

2002 (1)

2001 (1)

1999 (2)

1997 (2)

1987 (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, Mechanical, and Thermal-Properties of Barium Borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

Alford, W. J.

Antanavicius, R.

M. Kaucikas, M. Warren, A. Michailovas, R. Antanavicius, and J. J. van Thor, “Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals,” Laser Phys.23(2), 025401 (2013).
[CrossRef]

Arisholm, G.

Armstrong, D. J.

Bowers, M. S.

Davis, L.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, Mechanical, and Thermal-Properties of Barium Borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, Mechanical, and Thermal-Properties of Barium Borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

Farsund, O.

Farsund, Ø.

Gehr, R. J.

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, Mechanical, and Thermal-Properties of Barium Borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

Kaucikas, M.

M. Kaucikas, M. Warren, A. Michailovas, R. Antanavicius, and J. J. van Thor, “Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals,” Laser Phys.23(2), 025401 (2013).
[CrossRef]

Michailovas, A.

M. Kaucikas, M. Warren, A. Michailovas, R. Antanavicius, and J. J. van Thor, “Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals,” Laser Phys.23(2), 025401 (2013).
[CrossRef]

Raymond, T. D.

Rustad, G.

Schmitt, R. L.

Smith, A. V.

van Thor, J. J.

M. Kaucikas, M. Warren, A. Michailovas, R. Antanavicius, and J. J. van Thor, “Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals,” Laser Phys.23(2), 025401 (2013).
[CrossRef]

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, Mechanical, and Thermal-Properties of Barium Borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

Warren, M.

M. Kaucikas, M. Warren, A. Michailovas, R. Antanavicius, and J. J. van Thor, “Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals,” Laser Phys.23(2), 025401 (2013).
[CrossRef]

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, Mechanical, and Thermal-Properties of Barium Borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

J. Appl. Phys. (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, “Optical, Mechanical, and Thermal-Properties of Barium Borate,” J. Appl. Phys.62(5), 1968–1983 (1987).
[CrossRef]

J. Opt. Soc. Am. B (4)

Laser Phys. (1)

M. Kaucikas, M. Warren, A. Michailovas, R. Antanavicius, and J. J. van Thor, “Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals,” Laser Phys.23(2), 025401 (2013).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

G. Arisholm, “Advanced numerical simulation models for second-order nonlinear interactions,” Proc. SPIE3685, 86–97 (1999).
[CrossRef]

Other (1)

C. D. Nabors and G. Frangineas, “Optical parametric oscillator with bi-noncolinear, porro prism cavity,” in Advanced Solid State Lasers, OSA Trends in Optics and Photonics, Vol. 10, (Optical Society of America, Orlando, FL, 1997), 90–93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup and mirror specifications for the OPOs pumped by either 1064 nm or 532 nm.

Fig. 2
Fig. 2

Near (NF) and far fields (FF) for the 1064 nm pump and OPOs with KTP crystals oriented with parallel or orthogonal critical planes, and about 4 mm pump diameter. The OPO data were acquired at approximately 80 mJ pump energy, corresponding to around 20 mJ pulses at 1680 nm; NF of (a) pump, the case of (b) parallel and (c) orthogonal walk-off planes, FF of (d) pump, the case of (e) parallel and (f) orthogonal walk-off planes.

Fig. 3
Fig. 3

Signal pulse energy as function of 1064 nm pump pulse energy for KTP OPO with orthogonal critical planes for 3, 4, 5 and 7 mm pump diameter (in terms of 90% energy in bucket).

Fig. 4
Fig. 4

1680 nm signal far fields of the 1064 nm pumped OPO with orthogonal critical planes measured for 3 mm to 7 mm pump beam diameters as specified above each image, from (a) smallest to (d) widest pump beam at 25, 62, 96 and 174 mJ pump energy, respectively. The signal far fields are independent of pump beam diameter. The near fields of the signal were approximately 20% narrower than those of the corresponding pump.

Fig. 5
Fig. 5

Measured signal energies (left hand axis) and beam quality (right hand axis) at 650 nm, 670 nm and 720 nm signal wavelengths, corresponding to 283 m−1, 105 m−1 and 7 m−1 idler absorption in BBO, respectively. The pump beam diameter was approximately 3 mm.

Fig. 6
Fig. 6

Simulated performance of a 1064 nm pumped KTP OPO as function of relative phase shift through the half-wave plate. In the simulations, 60 and 100 mJ pump energy in a 4 mm diameter beam were assumed along with the experimental parameters listed in Section 2.

Fig. 7
Fig. 7

Far field of simulated KTP OPOs in Fig. 6 at different relative phase shifts.

Fig. 8
Fig. 8

Comparison of experimental data and simulations for a 1064 nm pumped KTP OPO with 4 mm diameter pump beam. The simulations are for 0 and 2.5 rad relative phase shift in the half-wave plate.

Tables (2)

Tables Icon

Table 1 Nonlinear Crystals Used in the Experimentsa

Tables Icon

Table 2 Idler Characteristics at Different Signal Wavelengthsb

Metrics