Abstract

We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2007)
  2. E.  Yablonovitch, G. D.  Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
    [CrossRef]
  3. H. W.  Deckman, C. B.  Roxlo, E.  Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8(9), 491–493 (1983).
    [CrossRef] [PubMed]
  4. S.  Noda, A.  Chutinan, M.  Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [CrossRef] [PubMed]
  5. S.  Noda, M.  Yokoyama, M.  Imada, A.  Chutinan, M.  Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
    [CrossRef] [PubMed]
  6. M.  Fujita, S.  Takahashi, Y.  Tanaka, T.  Asano, S.  Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
    [CrossRef] [PubMed]
  7. Y.  Tanaka, J.  Upham, T.  Nagashima, T.  Sugiya, T.  Asano, S.  Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
    [CrossRef] [PubMed]
  8. M.  De Zoysa, T.  Asano, K.  Mochizuki, A.  Oskooi, T.  Inoue, S.  Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
    [CrossRef]
  9. M.  Imada, S.  Noda, A.  Chutinan, T.  Tokuda, M.  Murata, G.  Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
    [CrossRef]
  10. E.  Miyai, K.  Sakai, T.  Okano, W.  Kunishi, D.  Ohnishi, S.  Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946–946 (2006).
    [CrossRef] [PubMed]
  11. H.  Matsubara, S.  Yoshimoto, H.  Saito, Y.  Jianglin, Y.  Tanaka, S.  Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
    [CrossRef] [PubMed]
  12. H.  Kitagawa, T.  Suto, M.  Fujita, Y.  Tanaka, T.  Asano, S.  Noda, “Green photoluminescence from GaInN photonic crystals,” Appl. Phys. Express 1, 032004 (2008).
    [CrossRef]
  13. Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
    [CrossRef]
  14. P.  Bermel, C.  Luo, L.  Zeng, L. C.  Kimerling, J. D.  Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
    [CrossRef] [PubMed]
  15. Y.  Park, E.  Drouard, O.  El Daif, X.  Letartre, P.  Viktorovitch, A.  Fave, A.  Kaminski, M.  Lemiti, C.  Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009).
    [CrossRef] [PubMed]
  16. S. B.  Mallick, M.  Agrawal, P.  Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
    [CrossRef] [PubMed]
  17. A.  Oskooi, P. A.  Favuzzi, Y.  Tanaka, H.  Shigeta, Y.  Kawakami, S.  Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
    [CrossRef]
  18. H.  Shigeta, M.  Fujita, Y.  Tanaka, A.  Oskooi, H.  Ogawa, Y.  Tsuda, S.  Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
    [CrossRef]
  19. A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [CrossRef]

2012

M.  De Zoysa, T.  Asano, K.  Mochizuki, A.  Oskooi, T.  Inoue, S.  Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

A.  Oskooi, P. A.  Favuzzi, Y.  Tanaka, H.  Shigeta, Y.  Kawakami, S.  Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

H.  Shigeta, M.  Fujita, Y.  Tanaka, A.  Oskooi, H.  Ogawa, Y.  Tsuda, S.  Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[CrossRef]

2010

Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

S. B.  Mallick, M.  Agrawal, P.  Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18(6), 5691–5706 (2010).
[CrossRef] [PubMed]

2009

2008

H.  Matsubara, S.  Yoshimoto, H.  Saito, Y.  Jianglin, Y.  Tanaka, S.  Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

H.  Kitagawa, T.  Suto, M.  Fujita, Y.  Tanaka, T.  Asano, S.  Noda, “Green photoluminescence from GaInN photonic crystals,” Appl. Phys. Express 1, 032004 (2008).
[CrossRef]

2007

Y.  Tanaka, J.  Upham, T.  Nagashima, T.  Sugiya, T.  Asano, S.  Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

P.  Bermel, C.  Luo, L.  Zeng, L. C.  Kimerling, J. D.  Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007).
[CrossRef] [PubMed]

2006

E.  Miyai, K.  Sakai, T.  Okano, W.  Kunishi, D.  Ohnishi, S.  Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946–946 (2006).
[CrossRef] [PubMed]

2005

M.  Fujita, S.  Takahashi, Y.  Tanaka, T.  Asano, S.  Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

2004

A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

2001

S.  Noda, M.  Yokoyama, M.  Imada, A.  Chutinan, M.  Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

2000

S.  Noda, A.  Chutinan, M.  Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

1999

M.  Imada, S.  Noda, A.  Chutinan, T.  Tokuda, M.  Murata, G.  Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

1983

1982

E.  Yablonovitch, G. D.  Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Agrawal, M.

Asano, T.

M.  De Zoysa, T.  Asano, K.  Mochizuki, A.  Oskooi, T.  Inoue, S.  Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

H.  Kitagawa, T.  Suto, M.  Fujita, Y.  Tanaka, T.  Asano, S.  Noda, “Green photoluminescence from GaInN photonic crystals,” Appl. Phys. Express 1, 032004 (2008).
[CrossRef]

Y.  Tanaka, J.  Upham, T.  Nagashima, T.  Sugiya, T.  Asano, S.  Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

M.  Fujita, S.  Takahashi, Y.  Tanaka, T.  Asano, S.  Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Bailat, J.

A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Bermel, P.

Chutinan, A.

S.  Noda, M.  Yokoyama, M.  Imada, A.  Chutinan, M.  Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

S.  Noda, A.  Chutinan, M.  Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

M.  Imada, S.  Noda, A.  Chutinan, T.  Tokuda, M.  Murata, G.  Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Cody, G. D.

E.  Yablonovitch, G. D.  Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

De Zoysa, M.

M.  De Zoysa, T.  Asano, K.  Mochizuki, A.  Oskooi, T.  Inoue, S.  Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Deckman, H. W.

Drouard, E.

Droz, C.

A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

El Daif, O.

Fave, A.

Favuzzi, P. A.

A.  Oskooi, P. A.  Favuzzi, Y.  Tanaka, H.  Shigeta, Y.  Kawakami, S.  Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Fujita, M.

H.  Shigeta, M.  Fujita, Y.  Tanaka, A.  Oskooi, H.  Ogawa, Y.  Tsuda, S.  Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[CrossRef]

H.  Kitagawa, T.  Suto, M.  Fujita, Y.  Tanaka, T.  Asano, S.  Noda, “Green photoluminescence from GaInN photonic crystals,” Appl. Phys. Express 1, 032004 (2008).
[CrossRef]

M.  Fujita, S.  Takahashi, Y.  Tanaka, T.  Asano, S.  Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Imada, M.

S.  Noda, M.  Yokoyama, M.  Imada, A.  Chutinan, M.  Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

S.  Noda, A.  Chutinan, M.  Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

M.  Imada, S.  Noda, A.  Chutinan, T.  Tokuda, M.  Murata, G.  Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Inoue, T.

M.  De Zoysa, T.  Asano, K.  Mochizuki, A.  Oskooi, T.  Inoue, S.  Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Iwahashi, S.

Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Jianglin, Y.

H.  Matsubara, S.  Yoshimoto, H.  Saito, Y.  Jianglin, Y.  Tanaka, S.  Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Kaminski, A.

Kawakami, Y.

A.  Oskooi, P. A.  Favuzzi, Y.  Tanaka, H.  Shigeta, Y.  Kawakami, S.  Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

Kimerling, L. C.

Kitagawa, H.

H.  Kitagawa, T.  Suto, M.  Fujita, Y.  Tanaka, T.  Asano, S.  Noda, “Green photoluminescence from GaInN photonic crystals,” Appl. Phys. Express 1, 032004 (2008).
[CrossRef]

Kroll, U.

A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Kunishi, W.

Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

E.  Miyai, K.  Sakai, T.  Okano, W.  Kunishi, D.  Ohnishi, S.  Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946–946 (2006).
[CrossRef] [PubMed]

Kurosaka, Y.

Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Lemiti, M.

Letartre, X.

Liang, Y.

Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Luo, C.

Mallick, S. B.

Matsubara, H.

H.  Matsubara, S.  Yoshimoto, H.  Saito, Y.  Jianglin, Y.  Tanaka, S.  Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Meier, J.

A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Miyai, E.

Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

E.  Miyai, K.  Sakai, T.  Okano, W.  Kunishi, D.  Ohnishi, S.  Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946–946 (2006).
[CrossRef] [PubMed]

Mochizuki, K.

M.  De Zoysa, T.  Asano, K.  Mochizuki, A.  Oskooi, T.  Inoue, S.  Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Mochizuki, M.

S.  Noda, M.  Yokoyama, M.  Imada, A.  Chutinan, M.  Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

Murata, M.

M.  Imada, S.  Noda, A.  Chutinan, T.  Tokuda, M.  Murata, G.  Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Nagashima, T.

Y.  Tanaka, J.  Upham, T.  Nagashima, T.  Sugiya, T.  Asano, S.  Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Noda, S.

A.  Oskooi, P. A.  Favuzzi, Y.  Tanaka, H.  Shigeta, Y.  Kawakami, S.  Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

M.  De Zoysa, T.  Asano, K.  Mochizuki, A.  Oskooi, T.  Inoue, S.  Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

H.  Shigeta, M.  Fujita, Y.  Tanaka, A.  Oskooi, H.  Ogawa, Y.  Tsuda, S.  Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[CrossRef]

Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

H.  Matsubara, S.  Yoshimoto, H.  Saito, Y.  Jianglin, Y.  Tanaka, S.  Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

H.  Kitagawa, T.  Suto, M.  Fujita, Y.  Tanaka, T.  Asano, S.  Noda, “Green photoluminescence from GaInN photonic crystals,” Appl. Phys. Express 1, 032004 (2008).
[CrossRef]

Y.  Tanaka, J.  Upham, T.  Nagashima, T.  Sugiya, T.  Asano, S.  Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

E.  Miyai, K.  Sakai, T.  Okano, W.  Kunishi, D.  Ohnishi, S.  Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946–946 (2006).
[CrossRef] [PubMed]

M.  Fujita, S.  Takahashi, Y.  Tanaka, T.  Asano, S.  Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

S.  Noda, M.  Yokoyama, M.  Imada, A.  Chutinan, M.  Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

S.  Noda, A.  Chutinan, M.  Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

M.  Imada, S.  Noda, A.  Chutinan, T.  Tokuda, M.  Murata, G.  Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Ogawa, H.

H.  Shigeta, M.  Fujita, Y.  Tanaka, A.  Oskooi, H.  Ogawa, Y.  Tsuda, S.  Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[CrossRef]

Ohnishi, D.

Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

E.  Miyai, K.  Sakai, T.  Okano, W.  Kunishi, D.  Ohnishi, S.  Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946–946 (2006).
[CrossRef] [PubMed]

Okano, T.

E.  Miyai, K.  Sakai, T.  Okano, W.  Kunishi, D.  Ohnishi, S.  Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946–946 (2006).
[CrossRef] [PubMed]

Oskooi, A.

A.  Oskooi, P. A.  Favuzzi, Y.  Tanaka, H.  Shigeta, Y.  Kawakami, S.  Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

H.  Shigeta, M.  Fujita, Y.  Tanaka, A.  Oskooi, H.  Ogawa, Y.  Tsuda, S.  Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[CrossRef]

M.  De Zoysa, T.  Asano, K.  Mochizuki, A.  Oskooi, T.  Inoue, S.  Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Park, Y.

Peumans, P.

Roxlo, C. B.

Saito, H.

H.  Matsubara, S.  Yoshimoto, H.  Saito, Y.  Jianglin, Y.  Tanaka, S.  Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Sakai, K.

Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

E.  Miyai, K.  Sakai, T.  Okano, W.  Kunishi, D.  Ohnishi, S.  Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946–946 (2006).
[CrossRef] [PubMed]

Sasaki, G.

M.  Imada, S.  Noda, A.  Chutinan, T.  Tokuda, M.  Murata, G.  Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Schade, H.

A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Seassal, C.

Shah, A.

A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Shigeta, H.

A.  Oskooi, P. A.  Favuzzi, Y.  Tanaka, H.  Shigeta, Y.  Kawakami, S.  Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

H.  Shigeta, M.  Fujita, Y.  Tanaka, A.  Oskooi, H.  Ogawa, Y.  Tsuda, S.  Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[CrossRef]

Sugiya, T.

Y.  Tanaka, J.  Upham, T.  Nagashima, T.  Sugiya, T.  Asano, S.  Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Suto, T.

H.  Kitagawa, T.  Suto, M.  Fujita, Y.  Tanaka, T.  Asano, S.  Noda, “Green photoluminescence from GaInN photonic crystals,” Appl. Phys. Express 1, 032004 (2008).
[CrossRef]

Takahashi, S.

M.  Fujita, S.  Takahashi, Y.  Tanaka, T.  Asano, S.  Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Tanaka, Y.

A.  Oskooi, P. A.  Favuzzi, Y.  Tanaka, H.  Shigeta, Y.  Kawakami, S.  Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

H.  Shigeta, M.  Fujita, Y.  Tanaka, A.  Oskooi, H.  Ogawa, Y.  Tsuda, S.  Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[CrossRef]

H.  Kitagawa, T.  Suto, M.  Fujita, Y.  Tanaka, T.  Asano, S.  Noda, “Green photoluminescence from GaInN photonic crystals,” Appl. Phys. Express 1, 032004 (2008).
[CrossRef]

H.  Matsubara, S.  Yoshimoto, H.  Saito, Y.  Jianglin, Y.  Tanaka, S.  Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Y.  Tanaka, J.  Upham, T.  Nagashima, T.  Sugiya, T.  Asano, S.  Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

M.  Fujita, S.  Takahashi, Y.  Tanaka, T.  Asano, S.  Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

Tokuda, T.

M.  Imada, S.  Noda, A.  Chutinan, T.  Tokuda, M.  Murata, G.  Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Tsuda, Y.

H.  Shigeta, M.  Fujita, Y.  Tanaka, A.  Oskooi, H.  Ogawa, Y.  Tsuda, S.  Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[CrossRef]

Upham, J.

Y.  Tanaka, J.  Upham, T.  Nagashima, T.  Sugiya, T.  Asano, S.  Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Vallat-Sauvain, E.

A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vanecek, M.

A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Viktorovitch, P.

Wyrsch, N.

A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Yablonovitch, E.

H. W.  Deckman, C. B.  Roxlo, E.  Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8(9), 491–493 (1983).
[CrossRef] [PubMed]

E.  Yablonovitch, G. D.  Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Yokoyama, M.

S.  Noda, M.  Yokoyama, M.  Imada, A.  Chutinan, M.  Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

Yoshimoto, S.

H.  Matsubara, S.  Yoshimoto, H.  Saito, Y.  Jianglin, Y.  Tanaka, S.  Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Zeng, L.

Appl. Phys. Express

H.  Kitagawa, T.  Suto, M.  Fujita, Y.  Tanaka, T.  Asano, S.  Noda, “Green photoluminescence from GaInN photonic crystals,” Appl. Phys. Express 1, 032004 (2008).
[CrossRef]

Appl. Phys. Lett.

M.  Imada, S.  Noda, A.  Chutinan, T.  Tokuda, M.  Murata, G.  Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

A.  Oskooi, P. A.  Favuzzi, Y.  Tanaka, H.  Shigeta, Y.  Kawakami, S.  Noda, “Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics,” Appl. Phys. Lett. 100(18), 181110 (2012).
[CrossRef]

H.  Shigeta, M.  Fujita, Y.  Tanaka, A.  Oskooi, H.  Ogawa, Y.  Tsuda, S.  Noda, “Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals,” Appl. Phys. Lett. 101(16), 161103 (2012).
[CrossRef]

IEEE Trans. Electron. Dev.

E.  Yablonovitch, G. D.  Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982).
[CrossRef]

Nat. Mater.

Y.  Tanaka, J.  Upham, T.  Nagashima, T.  Sugiya, T.  Asano, S.  Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Nat. Photonics

M.  De Zoysa, T.  Asano, K.  Mochizuki, A.  Oskooi, T.  Inoue, S.  Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[CrossRef]

Y.  Kurosaka, S.  Iwahashi, Y.  Liang, K.  Sakai, E.  Miyai, W.  Kunishi, D.  Ohnishi, S.  Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Nature

E.  Miyai, K.  Sakai, T.  Okano, W.  Kunishi, D.  Ohnishi, S.  Noda, “Photonics: lasers producing tailored beams,” Nature 441(7096), 946–946 (2006).
[CrossRef] [PubMed]

S.  Noda, A.  Chutinan, M.  Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Prog. Photovolt. Res. Appl.

A.  Shah, H.  Schade, M.  Vanecek, J.  Meier, E.  Vallat-Sauvain, N.  Wyrsch, U.  Kroll, C.  Droz, J.  Bailat, “Thin film silicon and solar cell technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Science

S.  Noda, M.  Yokoyama, M.  Imada, A.  Chutinan, M.  Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293(5532), 1123–1125 (2001).
[CrossRef] [PubMed]

M.  Fujita, S.  Takahashi, Y.  Tanaka, T.  Asano, S.  Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[CrossRef] [PubMed]

H.  Matsubara, S.  Yoshimoto, H.  Saito, Y.  Jianglin, Y.  Tanaka, S.  Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319(5862), 445–447 (2008).
[CrossRef] [PubMed]

Other

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic image of devices discussed in this paper. A PC is introduced into the photovoltaic layer. Calculation parameters are also described here. (b) Absorption coefficient of µc-Si used in the calculations.

Fig. 2
Fig. 2

(a) Schematic image of higher order modes for thickness direction in devices discussed in this paper. (b) Photonic band diagram for structure calculated using 3D FDTD methods. We used the material characteristics for a 900-nm wavelength. (c) Calculated optical absorption spectrum of the structure by 3D FDTD method.

Fig. 3
Fig. 3

(a) Schematic image of calculation model for a-Si based photovoltaic device. (b) Absorption coefficient of a-Si used in calculations. (c) Calculated absorption spectrum of structure by 3D FDTD method.

Fig. 4
Fig. 4

(a) Real space image of PC (reference structure) with a lattice constant of a. (b) Higher order modes for thickness direction in devices discussed in this paper. (b) Expression of reference PC structure (shown in Fig. 4(a)) in the reciprocal lattice space, where a square lattice structure appears with a lattice constant of 2π/a. (c) Schematic of band diagram for structure shown in Fig. 4(a). (d) Real space image of photonic superlattice structure, where multiple lattice points (2 × 2 periods) are included in the period while maintaining periodicity of reference structure. (e) Expression of photonic superlattice structure (shown in Fig. 4(d)) in reciprocal lattice space, where additional reciprocal lattice points appear compared with Fig. 4(b). (f) Schematic of band diagram for structure shown in Fig. 4(d). Since the fundamental Brillouin zone is reduced, photonic bands are folded in Γ point directions, and the Γ point photonic band-edge modes increased.

Fig. 5
Fig. 5

(a) Schematic image of PC structure for this calculation, which consists of a 2 × 2 period superlattice. (b) Calculated optical absorption spectrum of structure shown in Fig. 4(a) by 3D FDTD method. (c) Schematic image of PC structure for this calculation, which consists of a 4 × 4 period superlattice. (d) Calculated optical absorption spectrum of structure shown in Fig. 4(c) by 3D FDTD method.

Fig. 6
Fig. 6

Average optical absorption for various angle incidents for both Γ-X and Γ-X directions and both polarizations in wavelength range from 500 to 1000 nm weighted by solar spectrum (AM1.5), defined as Eq. (1), for superlattice structure with 4 × 4 periods shown in Fig. 5(c).

Fig. 7
Fig. 7

Average optical absorption in wavelength range from 500 to 1000 nm weighted by solar spectrum (AM1.5), defined as Eq. (1), for this paper’s structure. Dashed red line indicates average optical absorption for Lambertian textured structures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

500nm 1000nm λI( λ )S( λ )dλ 500nm 1000nm λS( λ )dλ

Metrics