Abstract

This paper details the design of a ray-leakage-free sawtooth-shaped planar lightguide solar concentrator. The concentrator combines Unger’s dimpled planar lightguide solar concentrators [1] with a prism array dimpled planar lightguide solar concentrator. The use of a sawtooth-shaped boundary on the planar lightguide prevents leakages of the guiding ray after multiple reflections in the lightguide. That is, the proposed solar concentrator can achieve a higher geometrical concentration ratio, while maintaining a high optical efficiency at the same time. Numerical results show that the proposed sawtooth-shaped planar lightguide solar concentrator achieves 2300x geometrical concentration ratio without any guiding ray-leakages from the planar lightguide.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Unger, G. R. Schmidt, and D. T. Moore, “Dimpled planar lightguide solar concentrators,” in Proceedings of International Optical Design Conference, (OSA, 2010), ITuE5P.
    [CrossRef]
  2. D. Feuermann and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy70(5), 423–430 (2001).
    [CrossRef]
  3. Z. Hongfei, T. Tao, D. Jing, and K. Huifang, “Light tracing analysis of a new kind of trough solar concentrator,” Energy Convers. Manage.52(6), 2373–2377 (2011).
    [CrossRef]
  4. V. Wittwer, W. Stahl, and A. Goetzberger, “Fluorescent Planar Concentrators,” Sol. Energy Mater.11(3), 187–197 (1984).
    [CrossRef]
  5. J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
    [CrossRef]
  6. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express19(S4Suppl 4), A673–A685 (2011).
    [CrossRef] [PubMed]
  7. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express18(2), 1122–1133 (2010).
    [CrossRef] [PubMed]
  8. M. Brown, D. Moore, G. Schmidt, and B. Unger, “Measurement and Characterization of Dimpled Planar Light Guide Prototypes,” in Proceedings of International Optical Design Conference, (OSA, 2010), JMB45P.
    [CrossRef]
  9. D. Moore, G. R. Schmidt, and B. Unger, “Concentrated photovoltaic stepped planar light guide,” in Proceedings of International Optical Design Conference, (OSA, 2010), JMB46P.
    [CrossRef]
  10. O. Selimoglu and R. Turan, “Exploration of the horizontally staggered light guides for high concentration CPV applications,” Opt. Express20(17), 19137–19147 (2012).
    [CrossRef] [PubMed]
  11. S.-C. Chu, H.-Y. Wu, and H.-H. Lin, “Planar lightguide solar concentrator,” Proc. SPIE8438, 843810, 843810-7 (2012).
    [CrossRef]
  12. Software LightTools, See website: http://www.opticalres.com/lt/ltprodds_f.html .
  13. P. Benítez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, and M. Hernández, “High performance Fresnel-based photovoltaic concentrator,” Opt. Express18(S1), A25–A40 (2010).
    [CrossRef]
  14. See website: http://rredc.nrel.gov/solar/spectra/am1.5/
  15. G. E. Engineering Thermoplastics Design Guide, See website: http://www.pdnotebook.com/wp-content/themes/thesis_18/custom/images/GE_plastic_design.pdf
  16. Design Guidelines – DSM, See website: http://www.dsm.com/en_US/downloads/dep/designbroch05USweb.pdf

2012 (2)

2011 (2)

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express19(S4Suppl 4), A673–A685 (2011).
[CrossRef] [PubMed]

Z. Hongfei, T. Tao, D. Jing, and K. Huifang, “Light tracing analysis of a new kind of trough solar concentrator,” Energy Convers. Manage.52(6), 2373–2377 (2011).
[CrossRef]

2010 (2)

2009 (1)

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

2001 (1)

D. Feuermann and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy70(5), 423–430 (2001).
[CrossRef]

1984 (1)

V. Wittwer, W. Stahl, and A. Goetzberger, “Fluorescent Planar Concentrators,” Sol. Energy Mater.11(3), 187–197 (1984).
[CrossRef]

Benítez, P.

Bosch, A.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Buljan, M.

Chaves, J.

Chu, S.-C.

S.-C. Chu, H.-Y. Wu, and H.-H. Lin, “Planar lightguide solar concentrator,” Proc. SPIE8438, 843810, 843810-7 (2012).
[CrossRef]

Cvetkovic, A.

Dimroth, F.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Feuermann, D.

D. Feuermann and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy70(5), 423–430 (2001).
[CrossRef]

Ford, J. E.

Glunz, S. W.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Goetzberger, A.

V. Wittwer, W. Stahl, and A. Goetzberger, “Fluorescent Planar Concentrators,” Sol. Energy Mater.11(3), 187–197 (1984).
[CrossRef]

Goldschmidt, J. C.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Gordon, J. M.

D. Feuermann and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy70(5), 423–430 (2001).
[CrossRef]

Hallas, J. M.

Helmers, H.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Hernández, M.

Hongfei, Z.

Z. Hongfei, T. Tao, D. Jing, and K. Huifang, “Light tracing analysis of a new kind of trough solar concentrator,” Energy Convers. Manage.52(6), 2373–2377 (2011).
[CrossRef]

Huifang, K.

Z. Hongfei, T. Tao, D. Jing, and K. Huifang, “Light tracing analysis of a new kind of trough solar concentrator,” Energy Convers. Manage.52(6), 2373–2377 (2011).
[CrossRef]

Jing, D.

Z. Hongfei, T. Tao, D. Jing, and K. Huifang, “Light tracing analysis of a new kind of trough solar concentrator,” Energy Convers. Manage.52(6), 2373–2377 (2011).
[CrossRef]

Karp, J. H.

Lin, H.-H.

S.-C. Chu, H.-Y. Wu, and H.-H. Lin, “Planar lightguide solar concentrator,” Proc. SPIE8438, 843810, 843810-7 (2012).
[CrossRef]

Miñano, J. C.

Mohedano, R.

Peters, M.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Selimoglu, O.

Stahl, W.

V. Wittwer, W. Stahl, and A. Goetzberger, “Fluorescent Planar Concentrators,” Sol. Energy Mater.11(3), 187–197 (1984).
[CrossRef]

Tao, T.

Z. Hongfei, T. Tao, D. Jing, and K. Huifang, “Light tracing analysis of a new kind of trough solar concentrator,” Energy Convers. Manage.52(6), 2373–2377 (2011).
[CrossRef]

Tremblay, E. J.

Turan, R.

Willeke, G.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Wittwer, V.

V. Wittwer, W. Stahl, and A. Goetzberger, “Fluorescent Planar Concentrators,” Sol. Energy Mater.11(3), 187–197 (1984).
[CrossRef]

Wu, H.-Y.

S.-C. Chu, H.-Y. Wu, and H.-H. Lin, “Planar lightguide solar concentrator,” Proc. SPIE8438, 843810, 843810-7 (2012).
[CrossRef]

Zamora, P.

Energy Convers. Manage. (1)

Z. Hongfei, T. Tao, D. Jing, and K. Huifang, “Light tracing analysis of a new kind of trough solar concentrator,” Energy Convers. Manage.52(6), 2373–2377 (2011).
[CrossRef]

Opt. Express (4)

Proc. SPIE (1)

S.-C. Chu, H.-Y. Wu, and H.-H. Lin, “Planar lightguide solar concentrator,” Proc. SPIE8438, 843810, 843810-7 (2012).
[CrossRef]

Sol. Energy (1)

D. Feuermann and J. M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Sol. Energy70(5), 423–430 (2001).
[CrossRef]

Sol. Energy Mater. (1)

V. Wittwer, W. Stahl, and A. Goetzberger, “Fluorescent Planar Concentrators,” Sol. Energy Mater.11(3), 187–197 (1984).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009).
[CrossRef]

Other (7)

M. Brown, D. Moore, G. Schmidt, and B. Unger, “Measurement and Characterization of Dimpled Planar Light Guide Prototypes,” in Proceedings of International Optical Design Conference, (OSA, 2010), JMB45P.
[CrossRef]

D. Moore, G. R. Schmidt, and B. Unger, “Concentrated photovoltaic stepped planar light guide,” in Proceedings of International Optical Design Conference, (OSA, 2010), JMB46P.
[CrossRef]

Software LightTools, See website: http://www.opticalres.com/lt/ltprodds_f.html .

See website: http://rredc.nrel.gov/solar/spectra/am1.5/

G. E. Engineering Thermoplastics Design Guide, See website: http://www.pdnotebook.com/wp-content/themes/thesis_18/custom/images/GE_plastic_design.pdf

Design Guidelines – DSM, See website: http://www.dsm.com/en_US/downloads/dep/designbroch05USweb.pdf

B. L. Unger, G. R. Schmidt, and D. T. Moore, “Dimpled planar lightguide solar concentrators,” in Proceedings of International Optical Design Conference, (OSA, 2010), ITuE5P.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of a sawtooth-shaped planar lightguide solar concentrator.

Fig. 2
Fig. 2

(a) The composition of a dimple structure and guiding ray path in the lightguide (b) A cross-section view of a dimpled planar lightguide solar concentrator.

Fig. 3
Fig. 3

Diagrams of guiding ray paths in two kinds of planar lightguides. The red arrows plot the guiding ray path in lightguides. (a) Unger’s dimpled planar lightguide. The ray paths show that the decrease in ray incident angle from reflections results in guiding ray leakages. (b) Planar lightguide with sawtooth-shaped boundary. The ray paths show that the sawtooth-shaped boundary successfully prevents the decrease in ray incident angle, i.e. prevents guiding ray leakages.

Fig. 4
Fig. 4

Side view of the focusing ray paths from one microlens in two kinds of planar lightguides, (a) Unger’s dimpled planar lightguide, and (b) sawtooth-shaped planar lightguide.

Fig. 5
Fig. 5

Schematic top view of the planar lightguide of the sawtooth-shaped planer lightguide solar concentrator. The lightguide is composed of two parts: parallel part and sawtooth part.

Fig. 6
Fig. 6

Cross-sectional view of guiding ray paths in a dimpled planar lightguide with parallel boundary. The red lines in Fig. 6(a) show the light interaction between the dimples. Figure 6(b) shows the relation between guiding ray incident angle ϕin and ray leading angle δn..

Fig. 7
Fig. 7

Schematic diagram of the combination of lightguide parallel part and lightguide sawtooth part. The green dotted rectangular area shows the conjoint zone. Any reflected ray from bypass elements in the conjoint zone (see dotted red arrow) will not fall on the sawtooth boundary of lightguide sawtooth part.

Fig. 8
Fig. 8

Schematic side view of guiding ray paths in a planar lightguide solar concentrator: (a) the y-z cross-section (the meridional plane), and (b) the x-z cross-section (the sagittal plane).

Fig. 9
Fig. 9

A schematic diagram which shows the influence of two values, x4 and Δθ, on the guiding ray path in the planar lightguide. x4 is the lateral ray intersect position at the injection elements, Δθ is the included angle between the reflected guiding ray and y-z plane of a skew incident ray on the sagittal plane. The δini is the initial leading angle of a guiding ray of the guiding ray leading angle when it leaves the skew ray-incident dimple column.

Fig. 10
Fig. 10

Geometrical concentration ratio of the ray-leakage-free planar lightguide solar concentrators versus the focal length of the microlenses while their dimple structures have different length-width ratios: (a) r = 25, (b) r = 15, and (c) r = 10. The solid blue and black lines show the results of the proposed sawtooth-shaped planar lightguide solar concentrators and Unger’s dimpled planar lightguide solar concentrators, respectively. While the dotted red lines show the smallest estimated Cgeo of the ray-leakage-free sawtooth-shaped planar lightguide solar calculated by Eqs. (4) to (10).

Fig. 11
Fig. 11

Optical efficiencies of the two kinds of planar lightguide solar concentrators versus the geometrical concentration ratios when their dimple structures have different length-width ratios: (a) r = 25, (b) r = 15, and (c) r = 10. This figure shows how the optical efficiency of these two kinds of solar concentrators decreases when the lightguide length exceeds their ray-leakage-free length. The blue and red lines show results of the proposed sawtooth-shaped planar lightguide solar concentrators and Unger’s dimpled planar lightguide solar concentrators, respectively.

Fig. 12
Fig. 12

Concentration-acceptance product (CAP) of the ray-leakage-free planar lightguide solar concentrators; while their dimple structures have different length-width ratios: (a) r = 25, (b) r = 15 and (b) r = 10. The black lines indicate the models of the ray-leakage-free sawtooth-shaped concentrators constructed in section 4.1. And the blue lines show the corresponding CAP value of each concentrator.

Fig. 13
Fig. 13

Efficiency versus the incident-ray tilted angle. The blue, red and black lines plot the result of three ray-leakage-free sawtooth-shaped concentrators while their dimple length-width ratio r and concentration ratio are: (r = 10, Cgeo = 240), (r = 15, Cgeo = 735), and (r = 25, Cgeo = 2000), respectively. The solid and dotted lines show the efficiencies of concentrators while the incident rays are tilted about the y-axis and x-axis, respectively.

Fig. 14
Fig. 14

Real optical efficiencies of sawtooth-shaped planar lightguide solar concentrators when their dimple structures have different length-width ratios: (a) r = 25, (b) r = 15 and (c) r = 10. The simulation results shown in this figure include the Fresnel loss and the material absorption. The black lines indicate the models of the ray-leakage-free sawtooth-shaped concentrators that were constructed in section 4.1. Blue lines show the corresponding optical efficiency of each concentrator when the incident light is normally incident monochromatic light of wavelength 0.55 μm. Red lines show the corresponding optical efficiency of each concentrator when the incident light possesses ± 0.26° divergence angle and the Air Mass 1.5 Solar Spectrum [14].

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

C geo = sunlight vertically incident area Lightguide exit port area = Lightguide length Lightguide depth ,
η= Vertically incident sunlight energy energy at lightguide exit port .
δ n =nα.
L n =acot( δ n ).
Nα π 2 α 2 θ C .
L lf n=1 N acot( δ n ) .
L overlapping = a 2 cot δ 1 ,
L sawtooth =a×r,
L parallel = n=1 N acot( δ n ) a 2 cot δ 1 .
δ n '= δ ini +(n1)α.
θ 1 '= sin 1 n0×sin θ 1 n 1 .
θ 3 = θ 2 '= sin 1 n 1 ×sin θ 1 ' n 0  and  θ 3 '= sin 1 n 0 ×sin θ 3 n 2 .
x 2 = x 1 d 1 'tan θ 2 ', x 3 = x 2 d 2 tan θ 3 , and x 4 = x 3 d 3 tan θ 3 ',
d 1 '= d 1 (ρ ρ 2 x 1 2 ).
x 4 ×cotΔθ d 3 .
δ ini ={ Δθ+α Δθ ; ; x 4 ×cotΔθ d 3 else .
CAP= C geo sinα.

Metrics