Abstract

We demonstrate a compact mid-infrared (mid-IR) radiation source based on difference frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystal. The system incorporates a dual-wavelength master oscillator power amplifier (MOPA) source capable of simultaneous amplification of 1064 nm and 1548 nm signals in a common active fiber co-doped with erbium and ytterbium ions. Two low-power seed lasers were amplified by a factor of 14.4 dB and 23.7 dB for 1064 nm and 1548 nm, respectively and used in a nonlinear DFG setup to generate 1.14 mW of radiation centered at 3.4 μm. The system allowed for open-path detection of methane (CH4) in ambient air with estimated minimum detectable concentration at a level of 26 ppbv.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Curl and F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem., Sect. C98, 219–272 (2002).
  2. K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
    [CrossRef]
  3. C. A. Zaugg, R. Lewicki, T. Day, R. F. Curl, and F. K. Tittel, “Faraday rotation spectroscopy of nitrogen dioxide based on a widely tunable external cavity quantum cascade laser,” Proc. SPIE7945, 79450O (2011).
    [CrossRef]
  4. V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B100(1), 125–130 (2010).
    [CrossRef]
  5. A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. McWhorter, and B. Ashcraft, “QEPAS methane sensor performance for humidified gases,” Appl. Phys. B92(1), 103–109 (2008).
    [CrossRef]
  6. M. R. McCurdy, A. Sharafkhaneh, H. Abdel-Monem, J. Rojo, and F. K. Tittel, “Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease,” J Breath Res5(1), 016003 (2011).
    [CrossRef] [PubMed]
  7. R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE7945, 79450K–2 (2011).
    [CrossRef]
  8. F. K. Tittel, D. Richter, A. Fried, I. T. Sorokina, and K. L. Vodopyanov, “Mid-Infrared Laser Applications in Spectroscopy,” Top. Appl. Phys.89, 458–516 (2003) (Solid-State Mid-Infrared Laser Sources).
    [CrossRef]
  9. D. Richter, D. Lancaster, R. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B67(3), 347–350 (1998).
    [CrossRef]
  10. S. Stry, P. Hering, and M. Mürtz, “Portable difference-frequency laser-based cavity leak-out spectrometer for trace-gas analysis,” Appl. Phys. B75(2-3), 297–303 (2002).
    [CrossRef]
  11. V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B92(2), 271–279 (2008).
    [CrossRef]
  12. L. Goldberg, D. G. Lancaster, J. Koplow, R. F. Curl, and F. K. Tittel, “Mid-IR DFG source pumped by a 1.1 μm/1.5 μm dual wavelength fiber amplifier for trace gas detection,” Opt. Lett.23, 1517–1519 (1998).
    [CrossRef] [PubMed]
  13. J. Chang, Q. Mao, S. Feng, X. Gao, and C. Xu, “Widely tunable mid-IR difference-frequency generation based on fiber lasers,” Opt. Lett.35(20), 3486–3488 (2010).
    [CrossRef] [PubMed]
  14. G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, A. Waz, and K. M. Abramski, “Pulsed dual-stage Fiber-MOPA source operating at 1550 nm with arbitrarily shaped output pulses,” Appl. Phys. B105(4), 721–727 (2011).
    [CrossRef]
  15. G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express19(20), 19104–19113 (2011).
    [CrossRef] [PubMed]
  16. V. Kuhn, P. Wessels, J. Neumann, and D. Kracht, “Stabilization and power scaling of cladding pumped Er:Yb-codoped fiber amplifier via auxiliary signal at 1064 nm,” Opt. Express17(20), 18304–18311 (2009).
    [CrossRef] [PubMed]
  17. V. Kuhn, D. Kracht, J. Neumann, and P. Wessels, “Dependence of Er:Yb-codoped 1.5 μm amplifier on wavelength-tuned auxiliary seed signal at 1 μm wavelength,” Opt. Lett.35(24), 4105–4107 (2010).
    [CrossRef] [PubMed]
  18. Y. L. Lee, C. Jung, Y. Noh, D. Ko, and J. Lee, “Photorefractive Effect in a Periodically Poled Ti:LiNbO3 Channel Waveguide,” J. Korean Phys. Soc.44, 267 (2004).
  19. D. Richter, B. Wert, A. Fried, P. Weibring, J. Walega, J. White, B. Vaughn, and F. K. Tittel, “High precision carbon dioxide isotope spectrometer with a difference frequency generation laser source,” Opt. Lett.34, 172–174 (2009).
    [CrossRef] [PubMed]
  20. http://hitran.iao.ru
  21. I. Armstrong, W. Johnstone, K. Duffin, M. Lengden, A. Chakraborty, and K. Ruxton, “Detection of CH4 in the mid-IR using difference frequency generation with tunable diode laser spectroscopy,” J. Lightwave Technol.28(10), 1435–1442 (2010).
    [CrossRef]
  22. S. D. Bridgham, H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang, “Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales,” Glob. Change Biol.19(5), 1325–1346 (2013).
    [CrossRef] [PubMed]

2013

S. D. Bridgham, H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang, “Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales,” Glob. Change Biol.19(5), 1325–1346 (2013).
[CrossRef] [PubMed]

2012

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
[CrossRef]

2011

C. A. Zaugg, R. Lewicki, T. Day, R. F. Curl, and F. K. Tittel, “Faraday rotation spectroscopy of nitrogen dioxide based on a widely tunable external cavity quantum cascade laser,” Proc. SPIE7945, 79450O (2011).
[CrossRef]

M. R. McCurdy, A. Sharafkhaneh, H. Abdel-Monem, J. Rojo, and F. K. Tittel, “Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease,” J Breath Res5(1), 016003 (2011).
[CrossRef] [PubMed]

R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE7945, 79450K–2 (2011).
[CrossRef]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, A. Waz, and K. M. Abramski, “Pulsed dual-stage Fiber-MOPA source operating at 1550 nm with arbitrarily shaped output pulses,” Appl. Phys. B105(4), 721–727 (2011).
[CrossRef]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express19(20), 19104–19113 (2011).
[CrossRef] [PubMed]

2010

2009

2008

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. McWhorter, and B. Ashcraft, “QEPAS methane sensor performance for humidified gases,” Appl. Phys. B92(1), 103–109 (2008).
[CrossRef]

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B92(2), 271–279 (2008).
[CrossRef]

2004

Y. L. Lee, C. Jung, Y. Noh, D. Ko, and J. Lee, “Photorefractive Effect in a Periodically Poled Ti:LiNbO3 Channel Waveguide,” J. Korean Phys. Soc.44, 267 (2004).

2003

F. K. Tittel, D. Richter, A. Fried, I. T. Sorokina, and K. L. Vodopyanov, “Mid-Infrared Laser Applications in Spectroscopy,” Top. Appl. Phys.89, 458–516 (2003) (Solid-State Mid-Infrared Laser Sources).
[CrossRef]

2002

R. F. Curl and F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem., Sect. C98, 219–272 (2002).

S. Stry, P. Hering, and M. Mürtz, “Portable difference-frequency laser-based cavity leak-out spectrometer for trace-gas analysis,” Appl. Phys. B75(2-3), 297–303 (2002).
[CrossRef]

1998

L. Goldberg, D. G. Lancaster, J. Koplow, R. F. Curl, and F. K. Tittel, “Mid-IR DFG source pumped by a 1.1 μm/1.5 μm dual wavelength fiber amplifier for trace gas detection,” Opt. Lett.23, 1517–1519 (1998).
[CrossRef] [PubMed]

D. Richter, D. Lancaster, R. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B67(3), 347–350 (1998).
[CrossRef]

Abdel-Monem, H.

M. R. McCurdy, A. Sharafkhaneh, H. Abdel-Monem, J. Rojo, and F. K. Tittel, “Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease,” J Breath Res5(1), 016003 (2011).
[CrossRef] [PubMed]

Abramski, K. M.

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, A. Waz, and K. M. Abramski, “Pulsed dual-stage Fiber-MOPA source operating at 1550 nm with arbitrarily shaped output pulses,” Appl. Phys. B105(4), 721–727 (2011).
[CrossRef]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express19(20), 19104–19113 (2011).
[CrossRef] [PubMed]

Antonczak, A.

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express19(20), 19104–19113 (2011).
[CrossRef] [PubMed]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, A. Waz, and K. M. Abramski, “Pulsed dual-stage Fiber-MOPA source operating at 1550 nm with arbitrarily shaped output pulses,” Appl. Phys. B105(4), 721–727 (2011).
[CrossRef]

Armstrong, I.

Ashcraft, B.

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. McWhorter, and B. Ashcraft, “QEPAS methane sensor performance for humidified gases,” Appl. Phys. B92(1), 103–109 (2008).
[CrossRef]

Bakhirkin, Y. A.

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. McWhorter, and B. Ashcraft, “QEPAS methane sensor performance for humidified gases,” Appl. Phys. B92(1), 103–109 (2008).
[CrossRef]

Belahsene, S.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
[CrossRef]

Bridgham, S. D.

S. D. Bridgham, H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang, “Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales,” Glob. Change Biol.19(5), 1325–1346 (2013).
[CrossRef] [PubMed]

Cadillo-Quiroz, H.

S. D. Bridgham, H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang, “Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales,” Glob. Change Biol.19(5), 1325–1346 (2013).
[CrossRef] [PubMed]

Chakraborty, A.

Chang, J.

Curl, R.

D. Richter, D. Lancaster, R. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B67(3), 347–350 (1998).
[CrossRef]

Curl, R. F.

C. A. Zaugg, R. Lewicki, T. Day, R. F. Curl, and F. K. Tittel, “Faraday rotation spectroscopy of nitrogen dioxide based on a widely tunable external cavity quantum cascade laser,” Proc. SPIE7945, 79450O (2011).
[CrossRef]

R. F. Curl and F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem., Sect. C98, 219–272 (2002).

L. Goldberg, D. G. Lancaster, J. Koplow, R. F. Curl, and F. K. Tittel, “Mid-IR DFG source pumped by a 1.1 μm/1.5 μm dual wavelength fiber amplifier for trace gas detection,” Opt. Lett.23, 1517–1519 (1998).
[CrossRef] [PubMed]

Day, T.

C. A. Zaugg, R. Lewicki, T. Day, R. F. Curl, and F. K. Tittel, “Faraday rotation spectroscopy of nitrogen dioxide based on a widely tunable external cavity quantum cascade laser,” Proc. SPIE7945, 79450O (2011).
[CrossRef]

Dong, L.

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B100(1), 125–130 (2010).
[CrossRef]

Duffin, K.

Feng, S.

Fischer, M.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
[CrossRef]

Fried, A.

D. Richter, B. Wert, A. Fried, P. Weibring, J. Walega, J. White, B. Vaughn, and F. K. Tittel, “High precision carbon dioxide isotope spectrometer with a difference frequency generation laser source,” Opt. Lett.34, 172–174 (2009).
[CrossRef] [PubMed]

F. K. Tittel, D. Richter, A. Fried, I. T. Sorokina, and K. L. Vodopyanov, “Mid-Infrared Laser Applications in Spectroscopy,” Top. Appl. Phys.89, 458–516 (2003) (Solid-State Mid-Infrared Laser Sources).
[CrossRef]

Gao, X.

Goldberg, L.

Hering, P.

S. Stry, P. Hering, and M. Mürtz, “Portable difference-frequency laser-based cavity leak-out spectrometer for trace-gas analysis,” Appl. Phys. B75(2-3), 297–303 (2002).
[CrossRef]

Holdsworth, R. J.

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B92(2), 271–279 (2008).
[CrossRef]

Johnstone, W.

Jung, C.

Y. L. Lee, C. Jung, Y. Noh, D. Ko, and J. Lee, “Photorefractive Effect in a Periodically Poled Ti:LiNbO3 Channel Waveguide,” J. Korean Phys. Soc.44, 267 (2004).

Kaczmarek, P.

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express19(20), 19104–19113 (2011).
[CrossRef] [PubMed]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, A. Waz, and K. M. Abramski, “Pulsed dual-stage Fiber-MOPA source operating at 1550 nm with arbitrarily shaped output pulses,” Appl. Phys. B105(4), 721–727 (2011).
[CrossRef]

Kasyutich, V. L.

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B92(2), 271–279 (2008).
[CrossRef]

Keller, J. K.

S. D. Bridgham, H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang, “Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales,” Glob. Change Biol.19(5), 1325–1346 (2013).
[CrossRef] [PubMed]

Ko, D.

Y. L. Lee, C. Jung, Y. Noh, D. Ko, and J. Lee, “Photorefractive Effect in a Periodically Poled Ti:LiNbO3 Channel Waveguide,” J. Korean Phys. Soc.44, 267 (2004).

Koeth, J.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
[CrossRef]

Koplow, J.

Kosterev, A. A.

R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE7945, 79450K–2 (2011).
[CrossRef]

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B100(1), 125–130 (2010).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. McWhorter, and B. Ashcraft, “QEPAS methane sensor performance for humidified gases,” Appl. Phys. B92(1), 103–109 (2008).
[CrossRef]

Kracht, D.

Krzempek, K.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
[CrossRef]

Kuhn, V.

Lancaster, D.

D. Richter, D. Lancaster, R. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B67(3), 347–350 (1998).
[CrossRef]

Lancaster, D. G.

Lee, J.

Y. L. Lee, C. Jung, Y. Noh, D. Ko, and J. Lee, “Photorefractive Effect in a Periodically Poled Ti:LiNbO3 Channel Waveguide,” J. Korean Phys. Soc.44, 267 (2004).

Lee, Y. L.

Y. L. Lee, C. Jung, Y. Noh, D. Ko, and J. Lee, “Photorefractive Effect in a Periodically Poled Ti:LiNbO3 Channel Waveguide,” J. Korean Phys. Soc.44, 267 (2004).

Lengden, M.

Lewicki, R.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
[CrossRef]

C. A. Zaugg, R. Lewicki, T. Day, R. F. Curl, and F. K. Tittel, “Faraday rotation spectroscopy of nitrogen dioxide based on a widely tunable external cavity quantum cascade laser,” Proc. SPIE7945, 79450O (2011).
[CrossRef]

R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE7945, 79450K–2 (2011).
[CrossRef]

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B100(1), 125–130 (2010).
[CrossRef]

Mao, Q.

Martin, P. A.

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B92(2), 271–279 (2008).
[CrossRef]

McCurdy, M. R.

M. R. McCurdy, A. Sharafkhaneh, H. Abdel-Monem, J. Rojo, and F. K. Tittel, “Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease,” J Breath Res5(1), 016003 (2011).
[CrossRef] [PubMed]

McWhorter, S.

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. McWhorter, and B. Ashcraft, “QEPAS methane sensor performance for humidified gases,” Appl. Phys. B92(1), 103–109 (2008).
[CrossRef]

Mürtz, M.

S. Stry, P. Hering, and M. Mürtz, “Portable difference-frequency laser-based cavity leak-out spectrometer for trace-gas analysis,” Appl. Phys. B75(2-3), 297–303 (2002).
[CrossRef]

Nähle, L.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
[CrossRef]

Neu, W.

D. Richter, D. Lancaster, R. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B67(3), 347–350 (1998).
[CrossRef]

Neumann, J.

Noh, Y.

Y. L. Lee, C. Jung, Y. Noh, D. Ko, and J. Lee, “Photorefractive Effect in a Periodically Poled Ti:LiNbO3 Channel Waveguide,” J. Korean Phys. Soc.44, 267 (2004).

Richter, D.

D. Richter, B. Wert, A. Fried, P. Weibring, J. Walega, J. White, B. Vaughn, and F. K. Tittel, “High precision carbon dioxide isotope spectrometer with a difference frequency generation laser source,” Opt. Lett.34, 172–174 (2009).
[CrossRef] [PubMed]

F. K. Tittel, D. Richter, A. Fried, I. T. Sorokina, and K. L. Vodopyanov, “Mid-Infrared Laser Applications in Spectroscopy,” Top. Appl. Phys.89, 458–516 (2003) (Solid-State Mid-Infrared Laser Sources).
[CrossRef]

D. Richter, D. Lancaster, R. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B67(3), 347–350 (1998).
[CrossRef]

Risby, T. H.

R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE7945, 79450K–2 (2011).
[CrossRef]

Rojo, J.

M. R. McCurdy, A. Sharafkhaneh, H. Abdel-Monem, J. Rojo, and F. K. Tittel, “Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease,” J Breath Res5(1), 016003 (2011).
[CrossRef] [PubMed]

Rouillard, Y.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
[CrossRef]

Ruxton, K.

Schwartz, T. B.

R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE7945, 79450K–2 (2011).
[CrossRef]

Sharafkhaneh, A.

M. R. McCurdy, A. Sharafkhaneh, H. Abdel-Monem, J. Rojo, and F. K. Tittel, “Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease,” J Breath Res5(1), 016003 (2011).
[CrossRef] [PubMed]

Sobon, G.

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, A. Waz, and K. M. Abramski, “Pulsed dual-stage Fiber-MOPA source operating at 1550 nm with arbitrarily shaped output pulses,” Appl. Phys. B105(4), 721–727 (2011).
[CrossRef]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express19(20), 19104–19113 (2011).
[CrossRef] [PubMed]

Solga, S.

R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE7945, 79450K–2 (2011).
[CrossRef]

Sorokina, I. T.

F. K. Tittel, D. Richter, A. Fried, I. T. Sorokina, and K. L. Vodopyanov, “Mid-Infrared Laser Applications in Spectroscopy,” Top. Appl. Phys.89, 458–516 (2003) (Solid-State Mid-Infrared Laser Sources).
[CrossRef]

Sotor, J.

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express19(20), 19104–19113 (2011).
[CrossRef] [PubMed]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, A. Waz, and K. M. Abramski, “Pulsed dual-stage Fiber-MOPA source operating at 1550 nm with arbitrarily shaped output pulses,” Appl. Phys. B105(4), 721–727 (2011).
[CrossRef]

Spagnolo, V.

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B100(1), 125–130 (2010).
[CrossRef]

Stry, S.

S. Stry, P. Hering, and M. Mürtz, “Portable difference-frequency laser-based cavity leak-out spectrometer for trace-gas analysis,” Appl. Phys. B75(2-3), 297–303 (2002).
[CrossRef]

Thomazy, D. M.

R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE7945, 79450K–2 (2011).
[CrossRef]

Tittel, F. K.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
[CrossRef]

M. R. McCurdy, A. Sharafkhaneh, H. Abdel-Monem, J. Rojo, and F. K. Tittel, “Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease,” J Breath Res5(1), 016003 (2011).
[CrossRef] [PubMed]

C. A. Zaugg, R. Lewicki, T. Day, R. F. Curl, and F. K. Tittel, “Faraday rotation spectroscopy of nitrogen dioxide based on a widely tunable external cavity quantum cascade laser,” Proc. SPIE7945, 79450O (2011).
[CrossRef]

R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE7945, 79450K–2 (2011).
[CrossRef]

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B100(1), 125–130 (2010).
[CrossRef]

D. Richter, B. Wert, A. Fried, P. Weibring, J. Walega, J. White, B. Vaughn, and F. K. Tittel, “High precision carbon dioxide isotope spectrometer with a difference frequency generation laser source,” Opt. Lett.34, 172–174 (2009).
[CrossRef] [PubMed]

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. McWhorter, and B. Ashcraft, “QEPAS methane sensor performance for humidified gases,” Appl. Phys. B92(1), 103–109 (2008).
[CrossRef]

F. K. Tittel, D. Richter, A. Fried, I. T. Sorokina, and K. L. Vodopyanov, “Mid-Infrared Laser Applications in Spectroscopy,” Top. Appl. Phys.89, 458–516 (2003) (Solid-State Mid-Infrared Laser Sources).
[CrossRef]

R. F. Curl and F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem., Sect. C98, 219–272 (2002).

L. Goldberg, D. G. Lancaster, J. Koplow, R. F. Curl, and F. K. Tittel, “Mid-IR DFG source pumped by a 1.1 μm/1.5 μm dual wavelength fiber amplifier for trace gas detection,” Opt. Lett.23, 1517–1519 (1998).
[CrossRef] [PubMed]

D. Richter, D. Lancaster, R. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B67(3), 347–350 (1998).
[CrossRef]

Vaughn, B.

Vodopyanov, K. L.

F. K. Tittel, D. Richter, A. Fried, I. T. Sorokina, and K. L. Vodopyanov, “Mid-Infrared Laser Applications in Spectroscopy,” Top. Appl. Phys.89, 458–516 (2003) (Solid-State Mid-Infrared Laser Sources).
[CrossRef]

Walega, J.

Waz, A.

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, A. Waz, and K. M. Abramski, “Pulsed dual-stage Fiber-MOPA source operating at 1550 nm with arbitrarily shaped output pulses,” Appl. Phys. B105(4), 721–727 (2011).
[CrossRef]

Weibring, P.

Wert, B.

Wessels, P.

White, J.

Worschech, L.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
[CrossRef]

Xu, C.

Zaugg, C. A.

C. A. Zaugg, R. Lewicki, T. Day, R. F. Curl, and F. K. Tittel, “Faraday rotation spectroscopy of nitrogen dioxide based on a widely tunable external cavity quantum cascade laser,” Proc. SPIE7945, 79450O (2011).
[CrossRef]

Zhuang, Q.

S. D. Bridgham, H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang, “Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales,” Glob. Change Biol.19(5), 1325–1346 (2013).
[CrossRef] [PubMed]

Annu. Rep. Prog. Chem., Sect. C

R. F. Curl and F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem., Sect. C98, 219–272 (2002).

Appl. Phys. B

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B106(2), 251–255 (2012).
[CrossRef]

V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B100(1), 125–130 (2010).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. McWhorter, and B. Ashcraft, “QEPAS methane sensor performance for humidified gases,” Appl. Phys. B92(1), 103–109 (2008).
[CrossRef]

D. Richter, D. Lancaster, R. Curl, W. Neu, and F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B67(3), 347–350 (1998).
[CrossRef]

S. Stry, P. Hering, and M. Mürtz, “Portable difference-frequency laser-based cavity leak-out spectrometer for trace-gas analysis,” Appl. Phys. B75(2-3), 297–303 (2002).
[CrossRef]

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO,” Appl. Phys. B92(2), 271–279 (2008).
[CrossRef]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, A. Waz, and K. M. Abramski, “Pulsed dual-stage Fiber-MOPA source operating at 1550 nm with arbitrarily shaped output pulses,” Appl. Phys. B105(4), 721–727 (2011).
[CrossRef]

Glob. Change Biol.

S. D. Bridgham, H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang, “Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales,” Glob. Change Biol.19(5), 1325–1346 (2013).
[CrossRef] [PubMed]

J Breath Res

M. R. McCurdy, A. Sharafkhaneh, H. Abdel-Monem, J. Rojo, and F. K. Tittel, “Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease,” J Breath Res5(1), 016003 (2011).
[CrossRef] [PubMed]

J. Korean Phys. Soc.

Y. L. Lee, C. Jung, Y. Noh, D. Ko, and J. Lee, “Photorefractive Effect in a Periodically Poled Ti:LiNbO3 Channel Waveguide,” J. Korean Phys. Soc.44, 267 (2004).

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. SPIE

C. A. Zaugg, R. Lewicki, T. Day, R. F. Curl, and F. K. Tittel, “Faraday rotation spectroscopy of nitrogen dioxide based on a widely tunable external cavity quantum cascade laser,” Proc. SPIE7945, 79450O (2011).
[CrossRef]

R. Lewicki, A. A. Kosterev, D. M. Thomazy, T. H. Risby, S. Solga, T. B. Schwartz, and F. K. Tittel, “Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor,” Proc. SPIE7945, 79450K–2 (2011).
[CrossRef]

Top. Appl. Phys.

F. K. Tittel, D. Richter, A. Fried, I. T. Sorokina, and K. L. Vodopyanov, “Mid-Infrared Laser Applications in Spectroscopy,” Top. Appl. Phys.89, 458–516 (2003) (Solid-State Mid-Infrared Laser Sources).
[CrossRef]

Other

http://hitran.iao.ru

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Dual-wavelength amplifier source. ISO- fiber isolator, EDFA- erbium-doped fiber amplifier, WDM-wavelength division multiplexer, CMS- cladding mode stripper, PC- fiber-based polarization controller

Fig. 2
Fig. 2

Amplified output powers as a function of pump power (a), registered 20 min amplifier power stability (b).

Fig. 3
Fig. 3

Optical spectra gathered at maximum pump power injected to the amplifier, (a) – 1064 nm, (b) – 1550 nm.

Fig. 4
Fig. 4

Degree of polarization fluctuations at maximum pump power conditions.

Fig. 5
Fig. 5

Azimuth and ellipticity time-dependent drifts of 1μm (a) and 1.5μm (b) under maximum pump power conditions.

Fig. 6
Fig. 6

Difference frequency generation setup. FC-APC – angled fiber connector, CL – collimating lens, FL – focusing lens, GF – germanium filter, M – silver mirror, PM – silver parabolic mirror.

Fig. 7
Fig. 7

Beam profiles at focusing point.

Fig. 8
Fig. 8

Idler output power as a function of power delivered to the PPLN crystal.

Fig. 9
Fig. 9

Hitran spectral simulation of absorption lines of 4% water and 1.8 ppmv of methane in ambient air for an optical pathlength of 8m.

Fig. 10
Fig. 10

2f absorption signal of ambient methane under atmospheric pressure (a). Inset- saturated absorption signal after fanning-in pure methane into the laboratory room (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 λ p 1 λ S 1 λ i =0.

Metrics