Abstract

Keyhole formation is a prerequisite for deep penetration laser welding. Understanding of the keyhole dynamics is essential to improve the stability of the keyhole. Direct observation of the keyhole during deep penetration laser welding of a modified “sandwich” specimen with a 10 kW fiber laser is presented. A distinct keyhole wall and liquid motion along the wall are observed directly for the first time. The moving liquid “shelf” on the front keyhole wall and the accompanying hydrodynamic and vapor phenomena are observed simultaneously. Micro-droplets torn off the keyhole wall and the resultant bursts of vapor are also visualized. The hydrodynamics on the keyhole wall has a dominant effect on the weld defects. The emission spectrum inside the keyhole is captured accurately using a spectrometer to calculate the characteristics of the keyhole plasma plume.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Katayama, Y. Kawahito, and M. Mizutani, “Latest Progress in Performance and Understanding of Laser Welding,” Phys. Procedia39, 8–16 (2012).
    [CrossRef]
  2. Y. Qin, A. Michalowski, R. Weber, S. Yang, T. Graf, and X. Ni, “Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference,” Opt. Express20(24), 26606–26617 (2012).
    [CrossRef] [PubMed]
  3. M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express18(21), 22305–22313 (2010).
    [CrossRef] [PubMed]
  4. A. F. Kaplan, “Fresnel absorption of 1μm-and 10μm-laser beams at the keyhole wall during laser beam welding: Comparison between smooth and wavy surfaces,” Appl. Surf. Sci.258(8), 3354–3363 (2012).
    [CrossRef]
  5. A. F. Kaplan, “Local absorptivity modulation of a 1μm-laser beam through surface waviness,” Appl. Surf. Sci.258(24), 9732–9736 (2012).
    [CrossRef]
  6. Optics.org news “IPG set to ship 100 kW laser” (Optics.org, 2012), http://optics.org/news/3/10/44 .
  7. P. Haug, V. Rominger, N. Speker, R. Weber, T. Graf, M. Weigl, and M. Schmidt, “Influence of laser wavelength on melt bath dynamics and resulting seam quality at welding of thick plates,” Phys. Procedia41, 49–58 (2013).
    [CrossRef]
  8. Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join.14(4), 288–294 (2009).
    [CrossRef]
  9. T. Ilar, I. Eriksson, J. Powell, and A. Kaplan, “Root humping in laser welding–an investigation based on high speed imaging,” Phys. Procedia39, 27–32 (2012).
    [CrossRef]
  10. A. Matsunawa, J. D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl.10(6), 247–254 (1998).
    [CrossRef]
  11. R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys.39(2), 394–400 (2006).
    [CrossRef]
  12. Y. Arata, H. Maruo, I. Miyamoto, and S. Takeuchi,R. A. Bakish, ed., “Dynamic Behavior of Laser Welding and Cutting,” in Proceedings 7th International Conference on Electron and Ion Beam Science and Technology, R. A. Bakish, ed. (Washington, D.C., 1976), pp. 111–128.
  13. Y. Arata, N. Abe, and T. Oda, “Fundamental phenomena in high power CO2 laser welding,” Trans. JWRI14(1), 5–11 (1985).
  14. N. Seto, S. Katayama, and A. Matsunawa, “High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation,” J. Laser Appl.12(6), 245–250 (2000).
    [CrossRef]
  15. Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys.40(19), 5854–5859 (2007).
    [CrossRef]
  16. P. Berger, H. Hügel, and T. Graf, “Understanding Pore Formation in Laser Beam Welding,” Phys. Procedia12, 241–247 (2011).
    [CrossRef]
  17. X. Jin, P. Berger, and T. Graf, “Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding,” J. Phys. D Appl. Phys.39(21), 4703–4712 (2006).
    [CrossRef]
  18. Y. Zhang, L. Li, and G. Zhang, “Spectroscopic measurements of plasma inside the keyhole in deep penetration laser welding,” J. Phys. D Appl. Phys.38(5), 703–710 (2005).
    [CrossRef]
  19. Y. Zhang, G. Chen, H. Wei, and J. Zhang, “A novel 'sandwich' method for observation of the keyhole in deep penetration laser welding,” Opt. Lasers Eng.46(2), 133–139 (2008).
    [CrossRef]
  20. X. Jin, L. Zeng, and Y. Cheng, “Direct observation of keyhole plasma characteristics in deep penetration laser welding of aluminum alloy 6016,” J. Phys. D Appl. Phys.45(24), 245205 (2012).
    [CrossRef]
  21. V. S. Golubev, “On possible models of hydrodynamical nostationary phenomena in processes of laser beam deep penetration into materials,” Proc. SPIE2713, 219–230 (1995).
    [CrossRef]
  22. A. A. Samokhin, “Influence of evaporation on metallic melt behaviour under laser action,” Kvantovaya Elektronika10, 2022–2026 (1983).
  23. V. S. Golubev, “Laser welding and cutting: recent insights into fluid dynamics mechanisms,” Proc. SPIE5121, 1–15 (2003).
    [CrossRef]
  24. V. S. Golubev, “Possible hydrodynamic phenomena in deep-penetration laser channels,” Proc. SPIE3888, 244–253 (2000).
    [CrossRef]
  25. A. Matsunawa, N. Seto, J. D. Kim, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in high power CO2 laser welding,” Proc. SPIE3888, 34–45 (2000).
    [CrossRef]
  26. S. Pang, L. Chen, J. Zhou, Y. Yin, and T. Chen, “A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding,” J. Phys. D Appl. Phys.44(2), 025301 (2011).
    [CrossRef]
  27. A. Matsunawa and V. Semak, “The simulation of front keyhole wall dynamics during laser welding,” J. Phys. D Appl. Phys.30(5), 798–809 (1997).
    [CrossRef]
  28. I. Eriksson, J. Powell, and A. F. H. Kaplan, “Measurements of fluid flow on keyhole front during laser welding,” Sci. Technol. Weld. Join.16(7), 636–641 (2011).
    [CrossRef]
  29. J. Dowden, P. Kapadia, A. Clucas, R. Ducharme, and W. M. Steen, “On the relation between fluid dynamic pressure and the formation of pores in laser keyhole welding,” J. Laser Appl.8(4), 183–190 (1996).
    [CrossRef]
  30. C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta B63(9), 893–916 (2008).
    [CrossRef]
  31. J. M. Dowden, P. Kapadia, and N. Postacioglu, “An analysis of the laser-plasma interaction in laser keyhole welding,” J. Phys. D Appl. Phys.22(6), 741–749 (1989).
    [CrossRef]

2013 (1)

P. Haug, V. Rominger, N. Speker, R. Weber, T. Graf, M. Weigl, and M. Schmidt, “Influence of laser wavelength on melt bath dynamics and resulting seam quality at welding of thick plates,” Phys. Procedia41, 49–58 (2013).
[CrossRef]

2012 (6)

A. F. Kaplan, “Fresnel absorption of 1μm-and 10μm-laser beams at the keyhole wall during laser beam welding: Comparison between smooth and wavy surfaces,” Appl. Surf. Sci.258(8), 3354–3363 (2012).
[CrossRef]

A. F. Kaplan, “Local absorptivity modulation of a 1μm-laser beam through surface waviness,” Appl. Surf. Sci.258(24), 9732–9736 (2012).
[CrossRef]

T. Ilar, I. Eriksson, J. Powell, and A. Kaplan, “Root humping in laser welding–an investigation based on high speed imaging,” Phys. Procedia39, 27–32 (2012).
[CrossRef]

X. Jin, L. Zeng, and Y. Cheng, “Direct observation of keyhole plasma characteristics in deep penetration laser welding of aluminum alloy 6016,” J. Phys. D Appl. Phys.45(24), 245205 (2012).
[CrossRef]

S. Katayama, Y. Kawahito, and M. Mizutani, “Latest Progress in Performance and Understanding of Laser Welding,” Phys. Procedia39, 8–16 (2012).
[CrossRef]

Y. Qin, A. Michalowski, R. Weber, S. Yang, T. Graf, and X. Ni, “Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference,” Opt. Express20(24), 26606–26617 (2012).
[CrossRef] [PubMed]

2011 (3)

S. Pang, L. Chen, J. Zhou, Y. Yin, and T. Chen, “A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding,” J. Phys. D Appl. Phys.44(2), 025301 (2011).
[CrossRef]

I. Eriksson, J. Powell, and A. F. H. Kaplan, “Measurements of fluid flow on keyhole front during laser welding,” Sci. Technol. Weld. Join.16(7), 636–641 (2011).
[CrossRef]

P. Berger, H. Hügel, and T. Graf, “Understanding Pore Formation in Laser Beam Welding,” Phys. Procedia12, 241–247 (2011).
[CrossRef]

2010 (1)

2009 (1)

Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join.14(4), 288–294 (2009).
[CrossRef]

2008 (2)

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta B63(9), 893–916 (2008).
[CrossRef]

Y. Zhang, G. Chen, H. Wei, and J. Zhang, “A novel 'sandwich' method for observation of the keyhole in deep penetration laser welding,” Opt. Lasers Eng.46(2), 133–139 (2008).
[CrossRef]

2007 (1)

Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys.40(19), 5854–5859 (2007).
[CrossRef]

2006 (2)

X. Jin, P. Berger, and T. Graf, “Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding,” J. Phys. D Appl. Phys.39(21), 4703–4712 (2006).
[CrossRef]

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys.39(2), 394–400 (2006).
[CrossRef]

2005 (1)

Y. Zhang, L. Li, and G. Zhang, “Spectroscopic measurements of plasma inside the keyhole in deep penetration laser welding,” J. Phys. D Appl. Phys.38(5), 703–710 (2005).
[CrossRef]

2003 (1)

V. S. Golubev, “Laser welding and cutting: recent insights into fluid dynamics mechanisms,” Proc. SPIE5121, 1–15 (2003).
[CrossRef]

2000 (3)

V. S. Golubev, “Possible hydrodynamic phenomena in deep-penetration laser channels,” Proc. SPIE3888, 244–253 (2000).
[CrossRef]

A. Matsunawa, N. Seto, J. D. Kim, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in high power CO2 laser welding,” Proc. SPIE3888, 34–45 (2000).
[CrossRef]

N. Seto, S. Katayama, and A. Matsunawa, “High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation,” J. Laser Appl.12(6), 245–250 (2000).
[CrossRef]

1998 (1)

A. Matsunawa, J. D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl.10(6), 247–254 (1998).
[CrossRef]

1997 (1)

A. Matsunawa and V. Semak, “The simulation of front keyhole wall dynamics during laser welding,” J. Phys. D Appl. Phys.30(5), 798–809 (1997).
[CrossRef]

1996 (1)

J. Dowden, P. Kapadia, A. Clucas, R. Ducharme, and W. M. Steen, “On the relation between fluid dynamic pressure and the formation of pores in laser keyhole welding,” J. Laser Appl.8(4), 183–190 (1996).
[CrossRef]

1995 (1)

V. S. Golubev, “On possible models of hydrodynamical nostationary phenomena in processes of laser beam deep penetration into materials,” Proc. SPIE2713, 219–230 (1995).
[CrossRef]

1989 (1)

J. M. Dowden, P. Kapadia, and N. Postacioglu, “An analysis of the laser-plasma interaction in laser keyhole welding,” J. Phys. D Appl. Phys.22(6), 741–749 (1989).
[CrossRef]

1985 (1)

Y. Arata, N. Abe, and T. Oda, “Fundamental phenomena in high power CO2 laser welding,” Trans. JWRI14(1), 5–11 (1985).

1983 (1)

A. A. Samokhin, “Influence of evaporation on metallic melt behaviour under laser action,” Kvantovaya Elektronika10, 2022–2026 (1983).

Abe, N.

Y. Arata, N. Abe, and T. Oda, “Fundamental phenomena in high power CO2 laser welding,” Trans. JWRI14(1), 5–11 (1985).

Aguilera, J. A.

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta B63(9), 893–916 (2008).
[CrossRef]

Ahmed, M. A.

Aragón, C.

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta B63(9), 893–916 (2008).
[CrossRef]

Arata, Y.

Y. Arata, N. Abe, and T. Oda, “Fundamental phenomena in high power CO2 laser welding,” Trans. JWRI14(1), 5–11 (1985).

Berger, P.

P. Berger, H. Hügel, and T. Graf, “Understanding Pore Formation in Laser Beam Welding,” Phys. Procedia12, 241–247 (2011).
[CrossRef]

X. Jin, P. Berger, and T. Graf, “Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding,” J. Phys. D Appl. Phys.39(21), 4703–4712 (2006).
[CrossRef]

Briand, F.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys.39(2), 394–400 (2006).
[CrossRef]

Chen, G.

Y. Zhang, G. Chen, H. Wei, and J. Zhang, “A novel 'sandwich' method for observation of the keyhole in deep penetration laser welding,” Opt. Lasers Eng.46(2), 133–139 (2008).
[CrossRef]

Chen, L.

S. Pang, L. Chen, J. Zhou, Y. Yin, and T. Chen, “A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding,” J. Phys. D Appl. Phys.44(2), 025301 (2011).
[CrossRef]

Chen, T.

S. Pang, L. Chen, J. Zhou, Y. Yin, and T. Chen, “A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding,” J. Phys. D Appl. Phys.44(2), 025301 (2011).
[CrossRef]

Cheng, Y.

X. Jin, L. Zeng, and Y. Cheng, “Direct observation of keyhole plasma characteristics in deep penetration laser welding of aluminum alloy 6016,” J. Phys. D Appl. Phys.45(24), 245205 (2012).
[CrossRef]

Clucas, A.

J. Dowden, P. Kapadia, A. Clucas, R. Ducharme, and W. M. Steen, “On the relation between fluid dynamic pressure and the formation of pores in laser keyhole welding,” J. Laser Appl.8(4), 183–190 (1996).
[CrossRef]

Coste, F.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys.39(2), 394–400 (2006).
[CrossRef]

Doudet, I.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys.39(2), 394–400 (2006).
[CrossRef]

Dowden, J.

J. Dowden, P. Kapadia, A. Clucas, R. Ducharme, and W. M. Steen, “On the relation between fluid dynamic pressure and the formation of pores in laser keyhole welding,” J. Laser Appl.8(4), 183–190 (1996).
[CrossRef]

Dowden, J. M.

J. M. Dowden, P. Kapadia, and N. Postacioglu, “An analysis of the laser-plasma interaction in laser keyhole welding,” J. Phys. D Appl. Phys.22(6), 741–749 (1989).
[CrossRef]

Ducharme, R.

J. Dowden, P. Kapadia, A. Clucas, R. Ducharme, and W. M. Steen, “On the relation between fluid dynamic pressure and the formation of pores in laser keyhole welding,” J. Laser Appl.8(4), 183–190 (1996).
[CrossRef]

Eriksson, I.

T. Ilar, I. Eriksson, J. Powell, and A. Kaplan, “Root humping in laser welding–an investigation based on high speed imaging,” Phys. Procedia39, 27–32 (2012).
[CrossRef]

I. Eriksson, J. Powell, and A. F. H. Kaplan, “Measurements of fluid flow on keyhole front during laser welding,” Sci. Technol. Weld. Join.16(7), 636–641 (2011).
[CrossRef]

Fabbro, R.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys.39(2), 394–400 (2006).
[CrossRef]

Golubev, V. S.

V. S. Golubev, “Laser welding and cutting: recent insights into fluid dynamics mechanisms,” Proc. SPIE5121, 1–15 (2003).
[CrossRef]

V. S. Golubev, “Possible hydrodynamic phenomena in deep-penetration laser channels,” Proc. SPIE3888, 244–253 (2000).
[CrossRef]

V. S. Golubev, “On possible models of hydrodynamical nostationary phenomena in processes of laser beam deep penetration into materials,” Proc. SPIE2713, 219–230 (1995).
[CrossRef]

Graf, T.

P. Haug, V. Rominger, N. Speker, R. Weber, T. Graf, M. Weigl, and M. Schmidt, “Influence of laser wavelength on melt bath dynamics and resulting seam quality at welding of thick plates,” Phys. Procedia41, 49–58 (2013).
[CrossRef]

Y. Qin, A. Michalowski, R. Weber, S. Yang, T. Graf, and X. Ni, “Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference,” Opt. Express20(24), 26606–26617 (2012).
[CrossRef] [PubMed]

P. Berger, H. Hügel, and T. Graf, “Understanding Pore Formation in Laser Beam Welding,” Phys. Procedia12, 241–247 (2011).
[CrossRef]

M. Kraus, M. A. Ahmed, A. Michalowski, A. Voss, R. Weber, and T. Graf, “Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization,” Opt. Express18(21), 22305–22313 (2010).
[CrossRef] [PubMed]

X. Jin, P. Berger, and T. Graf, “Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding,” J. Phys. D Appl. Phys.39(21), 4703–4712 (2006).
[CrossRef]

Haug, P.

P. Haug, V. Rominger, N. Speker, R. Weber, T. Graf, M. Weigl, and M. Schmidt, “Influence of laser wavelength on melt bath dynamics and resulting seam quality at welding of thick plates,” Phys. Procedia41, 49–58 (2013).
[CrossRef]

Hügel, H.

P. Berger, H. Hügel, and T. Graf, “Understanding Pore Formation in Laser Beam Welding,” Phys. Procedia12, 241–247 (2011).
[CrossRef]

Ilar, T.

T. Ilar, I. Eriksson, J. Powell, and A. Kaplan, “Root humping in laser welding–an investigation based on high speed imaging,” Phys. Procedia39, 27–32 (2012).
[CrossRef]

Jin, X.

X. Jin, L. Zeng, and Y. Cheng, “Direct observation of keyhole plasma characteristics in deep penetration laser welding of aluminum alloy 6016,” J. Phys. D Appl. Phys.45(24), 245205 (2012).
[CrossRef]

X. Jin, P. Berger, and T. Graf, “Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding,” J. Phys. D Appl. Phys.39(21), 4703–4712 (2006).
[CrossRef]

Kapadia, P.

J. Dowden, P. Kapadia, A. Clucas, R. Ducharme, and W. M. Steen, “On the relation between fluid dynamic pressure and the formation of pores in laser keyhole welding,” J. Laser Appl.8(4), 183–190 (1996).
[CrossRef]

J. M. Dowden, P. Kapadia, and N. Postacioglu, “An analysis of the laser-plasma interaction in laser keyhole welding,” J. Phys. D Appl. Phys.22(6), 741–749 (1989).
[CrossRef]

Kaplan, A.

T. Ilar, I. Eriksson, J. Powell, and A. Kaplan, “Root humping in laser welding–an investigation based on high speed imaging,” Phys. Procedia39, 27–32 (2012).
[CrossRef]

Kaplan, A. F.

A. F. Kaplan, “Local absorptivity modulation of a 1μm-laser beam through surface waviness,” Appl. Surf. Sci.258(24), 9732–9736 (2012).
[CrossRef]

A. F. Kaplan, “Fresnel absorption of 1μm-and 10μm-laser beams at the keyhole wall during laser beam welding: Comparison between smooth and wavy surfaces,” Appl. Surf. Sci.258(8), 3354–3363 (2012).
[CrossRef]

Kaplan, A. F. H.

I. Eriksson, J. Powell, and A. F. H. Kaplan, “Measurements of fluid flow on keyhole front during laser welding,” Sci. Technol. Weld. Join.16(7), 636–641 (2011).
[CrossRef]

Katayama, S.

S. Katayama, Y. Kawahito, and M. Mizutani, “Latest Progress in Performance and Understanding of Laser Welding,” Phys. Procedia39, 8–16 (2012).
[CrossRef]

Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join.14(4), 288–294 (2009).
[CrossRef]

Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys.40(19), 5854–5859 (2007).
[CrossRef]

A. Matsunawa, N. Seto, J. D. Kim, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in high power CO2 laser welding,” Proc. SPIE3888, 34–45 (2000).
[CrossRef]

N. Seto, S. Katayama, and A. Matsunawa, “High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation,” J. Laser Appl.12(6), 245–250 (2000).
[CrossRef]

A. Matsunawa, J. D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl.10(6), 247–254 (1998).
[CrossRef]

Kawahito, Y.

S. Katayama, Y. Kawahito, and M. Mizutani, “Latest Progress in Performance and Understanding of Laser Welding,” Phys. Procedia39, 8–16 (2012).
[CrossRef]

Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join.14(4), 288–294 (2009).
[CrossRef]

Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys.40(19), 5854–5859 (2007).
[CrossRef]

Kim, J. D.

A. Matsunawa, N. Seto, J. D. Kim, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in high power CO2 laser welding,” Proc. SPIE3888, 34–45 (2000).
[CrossRef]

A. Matsunawa, J. D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl.10(6), 247–254 (1998).
[CrossRef]

Kraus, M.

Li, L.

Y. Zhang, L. Li, and G. Zhang, “Spectroscopic measurements of plasma inside the keyhole in deep penetration laser welding,” J. Phys. D Appl. Phys.38(5), 703–710 (2005).
[CrossRef]

Matsunawa, A.

N. Seto, S. Katayama, and A. Matsunawa, “High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation,” J. Laser Appl.12(6), 245–250 (2000).
[CrossRef]

A. Matsunawa, N. Seto, J. D. Kim, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in high power CO2 laser welding,” Proc. SPIE3888, 34–45 (2000).
[CrossRef]

A. Matsunawa, J. D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl.10(6), 247–254 (1998).
[CrossRef]

A. Matsunawa and V. Semak, “The simulation of front keyhole wall dynamics during laser welding,” J. Phys. D Appl. Phys.30(5), 798–809 (1997).
[CrossRef]

Michalowski, A.

Mizutani, M.

S. Katayama, Y. Kawahito, and M. Mizutani, “Latest Progress in Performance and Understanding of Laser Welding,” Phys. Procedia39, 8–16 (2012).
[CrossRef]

Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join.14(4), 288–294 (2009).
[CrossRef]

Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys.40(19), 5854–5859 (2007).
[CrossRef]

A. Matsunawa, N. Seto, J. D. Kim, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in high power CO2 laser welding,” Proc. SPIE3888, 34–45 (2000).
[CrossRef]

A. Matsunawa, J. D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl.10(6), 247–254 (1998).
[CrossRef]

Ni, X.

Oda, T.

Y. Arata, N. Abe, and T. Oda, “Fundamental phenomena in high power CO2 laser welding,” Trans. JWRI14(1), 5–11 (1985).

Pang, S.

S. Pang, L. Chen, J. Zhou, Y. Yin, and T. Chen, “A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding,” J. Phys. D Appl. Phys.44(2), 025301 (2011).
[CrossRef]

Postacioglu, N.

J. M. Dowden, P. Kapadia, and N. Postacioglu, “An analysis of the laser-plasma interaction in laser keyhole welding,” J. Phys. D Appl. Phys.22(6), 741–749 (1989).
[CrossRef]

Powell, J.

T. Ilar, I. Eriksson, J. Powell, and A. Kaplan, “Root humping in laser welding–an investigation based on high speed imaging,” Phys. Procedia39, 27–32 (2012).
[CrossRef]

I. Eriksson, J. Powell, and A. F. H. Kaplan, “Measurements of fluid flow on keyhole front during laser welding,” Sci. Technol. Weld. Join.16(7), 636–641 (2011).
[CrossRef]

Qin, Y.

Rominger, V.

P. Haug, V. Rominger, N. Speker, R. Weber, T. Graf, M. Weigl, and M. Schmidt, “Influence of laser wavelength on melt bath dynamics and resulting seam quality at welding of thick plates,” Phys. Procedia41, 49–58 (2013).
[CrossRef]

Samokhin, A. A.

A. A. Samokhin, “Influence of evaporation on metallic melt behaviour under laser action,” Kvantovaya Elektronika10, 2022–2026 (1983).

Schmidt, M.

P. Haug, V. Rominger, N. Speker, R. Weber, T. Graf, M. Weigl, and M. Schmidt, “Influence of laser wavelength on melt bath dynamics and resulting seam quality at welding of thick plates,” Phys. Procedia41, 49–58 (2013).
[CrossRef]

Semak, V.

A. Matsunawa and V. Semak, “The simulation of front keyhole wall dynamics during laser welding,” J. Phys. D Appl. Phys.30(5), 798–809 (1997).
[CrossRef]

Seto, N.

N. Seto, S. Katayama, and A. Matsunawa, “High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation,” J. Laser Appl.12(6), 245–250 (2000).
[CrossRef]

A. Matsunawa, N. Seto, J. D. Kim, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in high power CO2 laser welding,” Proc. SPIE3888, 34–45 (2000).
[CrossRef]

A. Matsunawa, J. D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl.10(6), 247–254 (1998).
[CrossRef]

Slimani, S.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys.39(2), 394–400 (2006).
[CrossRef]

Speker, N.

P. Haug, V. Rominger, N. Speker, R. Weber, T. Graf, M. Weigl, and M. Schmidt, “Influence of laser wavelength on melt bath dynamics and resulting seam quality at welding of thick plates,” Phys. Procedia41, 49–58 (2013).
[CrossRef]

Steen, W. M.

J. Dowden, P. Kapadia, A. Clucas, R. Ducharme, and W. M. Steen, “On the relation between fluid dynamic pressure and the formation of pores in laser keyhole welding,” J. Laser Appl.8(4), 183–190 (1996).
[CrossRef]

Voss, A.

Weber, R.

Wei, H.

Y. Zhang, G. Chen, H. Wei, and J. Zhang, “A novel 'sandwich' method for observation of the keyhole in deep penetration laser welding,” Opt. Lasers Eng.46(2), 133–139 (2008).
[CrossRef]

Weigl, M.

P. Haug, V. Rominger, N. Speker, R. Weber, T. Graf, M. Weigl, and M. Schmidt, “Influence of laser wavelength on melt bath dynamics and resulting seam quality at welding of thick plates,” Phys. Procedia41, 49–58 (2013).
[CrossRef]

Yang, S.

Yin, Y.

S. Pang, L. Chen, J. Zhou, Y. Yin, and T. Chen, “A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding,” J. Phys. D Appl. Phys.44(2), 025301 (2011).
[CrossRef]

Zeng, L.

X. Jin, L. Zeng, and Y. Cheng, “Direct observation of keyhole plasma characteristics in deep penetration laser welding of aluminum alloy 6016,” J. Phys. D Appl. Phys.45(24), 245205 (2012).
[CrossRef]

Zhang, G.

Y. Zhang, L. Li, and G. Zhang, “Spectroscopic measurements of plasma inside the keyhole in deep penetration laser welding,” J. Phys. D Appl. Phys.38(5), 703–710 (2005).
[CrossRef]

Zhang, J.

Y. Zhang, G. Chen, H. Wei, and J. Zhang, “A novel 'sandwich' method for observation of the keyhole in deep penetration laser welding,” Opt. Lasers Eng.46(2), 133–139 (2008).
[CrossRef]

Zhang, Y.

Y. Zhang, G. Chen, H. Wei, and J. Zhang, “A novel 'sandwich' method for observation of the keyhole in deep penetration laser welding,” Opt. Lasers Eng.46(2), 133–139 (2008).
[CrossRef]

Y. Zhang, L. Li, and G. Zhang, “Spectroscopic measurements of plasma inside the keyhole in deep penetration laser welding,” J. Phys. D Appl. Phys.38(5), 703–710 (2005).
[CrossRef]

Zhou, J.

S. Pang, L. Chen, J. Zhou, Y. Yin, and T. Chen, “A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding,” J. Phys. D Appl. Phys.44(2), 025301 (2011).
[CrossRef]

Appl. Surf. Sci. (2)

A. F. Kaplan, “Fresnel absorption of 1μm-and 10μm-laser beams at the keyhole wall during laser beam welding: Comparison between smooth and wavy surfaces,” Appl. Surf. Sci.258(8), 3354–3363 (2012).
[CrossRef]

A. F. Kaplan, “Local absorptivity modulation of a 1μm-laser beam through surface waviness,” Appl. Surf. Sci.258(24), 9732–9736 (2012).
[CrossRef]

J. Laser Appl. (3)

A. Matsunawa, J. D. Kim, N. Seto, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in laser welding,” J. Laser Appl.10(6), 247–254 (1998).
[CrossRef]

N. Seto, S. Katayama, and A. Matsunawa, “High-speed simultaneous observation of plasma and keyhole behavior during high power CO2 laser welding: effect of shielding gas on porosity formation,” J. Laser Appl.12(6), 245–250 (2000).
[CrossRef]

J. Dowden, P. Kapadia, A. Clucas, R. Ducharme, and W. M. Steen, “On the relation between fluid dynamic pressure and the formation of pores in laser keyhole welding,” J. Laser Appl.8(4), 183–190 (1996).
[CrossRef]

J. Phys. D Appl. Phys. (8)

J. M. Dowden, P. Kapadia, and N. Postacioglu, “An analysis of the laser-plasma interaction in laser keyhole welding,” J. Phys. D Appl. Phys.22(6), 741–749 (1989).
[CrossRef]

X. Jin, L. Zeng, and Y. Cheng, “Direct observation of keyhole plasma characteristics in deep penetration laser welding of aluminum alloy 6016,” J. Phys. D Appl. Phys.45(24), 245205 (2012).
[CrossRef]

S. Pang, L. Chen, J. Zhou, Y. Yin, and T. Chen, “A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding,” J. Phys. D Appl. Phys.44(2), 025301 (2011).
[CrossRef]

A. Matsunawa and V. Semak, “The simulation of front keyhole wall dynamics during laser welding,” J. Phys. D Appl. Phys.30(5), 798–809 (1997).
[CrossRef]

Y. Kawahito, M. Mizutani, and S. Katayama, “Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry,” J. Phys. D Appl. Phys.40(19), 5854–5859 (2007).
[CrossRef]

X. Jin, P. Berger, and T. Graf, “Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding,” J. Phys. D Appl. Phys.39(21), 4703–4712 (2006).
[CrossRef]

Y. Zhang, L. Li, and G. Zhang, “Spectroscopic measurements of plasma inside the keyhole in deep penetration laser welding,” J. Phys. D Appl. Phys.38(5), 703–710 (2005).
[CrossRef]

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding,” J. Phys. D Appl. Phys.39(2), 394–400 (2006).
[CrossRef]

Kvantovaya Elektronika (1)

A. A. Samokhin, “Influence of evaporation on metallic melt behaviour under laser action,” Kvantovaya Elektronika10, 2022–2026 (1983).

Opt. Express (2)

Opt. Lasers Eng. (1)

Y. Zhang, G. Chen, H. Wei, and J. Zhang, “A novel 'sandwich' method for observation of the keyhole in deep penetration laser welding,” Opt. Lasers Eng.46(2), 133–139 (2008).
[CrossRef]

Phys. Procedia (4)

P. Berger, H. Hügel, and T. Graf, “Understanding Pore Formation in Laser Beam Welding,” Phys. Procedia12, 241–247 (2011).
[CrossRef]

T. Ilar, I. Eriksson, J. Powell, and A. Kaplan, “Root humping in laser welding–an investigation based on high speed imaging,” Phys. Procedia39, 27–32 (2012).
[CrossRef]

P. Haug, V. Rominger, N. Speker, R. Weber, T. Graf, M. Weigl, and M. Schmidt, “Influence of laser wavelength on melt bath dynamics and resulting seam quality at welding of thick plates,” Phys. Procedia41, 49–58 (2013).
[CrossRef]

S. Katayama, Y. Kawahito, and M. Mizutani, “Latest Progress in Performance and Understanding of Laser Welding,” Phys. Procedia39, 8–16 (2012).
[CrossRef]

Proc. SPIE (4)

V. S. Golubev, “On possible models of hydrodynamical nostationary phenomena in processes of laser beam deep penetration into materials,” Proc. SPIE2713, 219–230 (1995).
[CrossRef]

V. S. Golubev, “Laser welding and cutting: recent insights into fluid dynamics mechanisms,” Proc. SPIE5121, 1–15 (2003).
[CrossRef]

V. S. Golubev, “Possible hydrodynamic phenomena in deep-penetration laser channels,” Proc. SPIE3888, 244–253 (2000).
[CrossRef]

A. Matsunawa, N. Seto, J. D. Kim, M. Mizutani, and S. Katayama, “Dynamics of keyhole and molten pool in high power CO2 laser welding,” Proc. SPIE3888, 34–45 (2000).
[CrossRef]

Sci. Technol. Weld. Join. (2)

Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join.14(4), 288–294 (2009).
[CrossRef]

I. Eriksson, J. Powell, and A. F. H. Kaplan, “Measurements of fluid flow on keyhole front during laser welding,” Sci. Technol. Weld. Join.16(7), 636–641 (2011).
[CrossRef]

Spectrochim. Acta B (1)

C. Aragón and J. A. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta B63(9), 893–916 (2008).
[CrossRef]

Trans. JWRI (1)

Y. Arata, N. Abe, and T. Oda, “Fundamental phenomena in high power CO2 laser welding,” Trans. JWRI14(1), 5–11 (1985).

Other (2)

Y. Arata, H. Maruo, I. Miyamoto, and S. Takeuchi,R. A. Bakish, ed., “Dynamic Behavior of Laser Welding and Cutting,” in Proceedings 7th International Conference on Electron and Ion Beam Science and Technology, R. A. Bakish, ed. (Washington, D.C., 1976), pp. 111–128.

Optics.org news “IPG set to ship 100 kW laser” (Optics.org, 2012), http://optics.org/news/3/10/44 .

Supplementary Material (6)

» Media 1: MOV (7035 KB)     
» Media 2: MOV (1515 KB)     
» Media 3: MOV (2154 KB)     
» Media 4: MOV (7035 KB)     
» Media 5: MOV (1515 KB)     
» Media 6: MOV (2154 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup: (a) Setup for observing the longitudinal keyhole with a high-speed camera system. (b) Setup for capturing the keyhole plasma plume with a spectrometer system.

Fig. 2
Fig. 2

Direct observation of the longitudinal keyhole during 10 kW fiber laser welding of a modified sandwich specimen at a welding velocity of 1.2 m·min−1 and a + 5 mm defocus (Media 1).

Fig. 3
Fig. 3

Direct observation of the longitudinal keyhole and plasma plume with formation of bubble during 10 kW fiber laser welding of a modified “sandwich” specimen at 1.5 m min−1 welding velocity and 0 mm defocus (Media 2).

Fig. 4
Fig. 4

Direct observation of the keyhole outlet and melt ejected from the bottom during full penetration laser welding of a modified sandwich specimen with a 10 kW fiber laser at a welding velocity of 1.2 m·min−1 and a −10 mm defocus (Media 3).

Fig. 5
Fig. 5

Optical emission spectrum of the captured keyhole plasma plume based on a modified sandwich specimen during 10 kW fiber laser welding of stainless steel at a welding velocity of 1.2 m·min−1 and a + 5 mm defocus.

Fig. 6
Fig. 6

Boltzmann plot obtained from the Fe I lines of the keyhole plasma plume.

Metrics