Abstract

We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Lawniczuk, M. Wale, P. Szczepanski, R. Piramidowicz, M. Smit, and X. Leijtens, “Photonic multiwavelength transmitters with DBR laser array for optical access networks,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, paper JW2A.35.
    [CrossRef]
  2. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
    [CrossRef]
  3. S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron.8(6), 1358–1365 (2002).
    [CrossRef]
  4. J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
    [CrossRef]
  5. V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express18(2), 694–699 (2010).
    [CrossRef] [PubMed]
  6. K. Lawniczuk, C. Kazmierski, J. Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett.25(4), 352–354 (2013).
    [CrossRef]
  7. J. Carroll, J. Whiteaway, and D. Plumb, Distributed feedback semiconductor lasers, 1998, Inst. Elec. Eng.
  8. S. Akiba, M. Usami, and K. Utaka, “1.5 µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol.5(11), 1564–1573 (1987).
    [CrossRef]
  9. P. Zhou and G. S. Lee, “Mode selection and spatial hole burning suppression of a chirped grating distributed feedback laser,” Appl. Phys. Lett.56(15), 1400–1402 (1990).
    [CrossRef]
  10. P. Zhou and G. S. Lee, “Phase shifted distributed feedback laser with linearly chirped grating for narrow linewidth and high-power operation,” Appl. Phys. Lett.58(4), 331–333 (1991).
    [CrossRef]
  11. H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004).
    [CrossRef]
  12. D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1–4), 331–350 (1996).
    [CrossRef]
  13. Y. Dai and J. P. Yao, “Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology,” IEEE J. Quantum Electron.44(10), 938–945 (2008).
    [CrossRef]
  14. S. Li, Y. Shi, J. Li, R. Gu, X. Tu, and X. Chen, “Experimental demonstration of the corrugation pitch modulated DFB semiconductor laser based on the reconstruction-equivalent-chirp technology,” Proc. Commun. Photon. Conf. 112–113 (2010).
  15. Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on reconstruction-equivalent-chirp technique,” Opt. Express20(16), 17374–17379 (2012).
    [CrossRef] [PubMed]
  16. Y. Shi, X. Chen, Y. Zhou, S. Li, L. Lu, R. Liu, and Y. Feng, “Experimental demonstration of eight-wavelength distributed feedback semiconductor laser array using equivalent phase shift,” Opt. Lett.37(16), 3315–3317 (2012).
    [CrossRef] [PubMed]
  17. J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
    [CrossRef]
  18. J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
    [CrossRef]

2013

K. Lawniczuk, C. Kazmierski, J. Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett.25(4), 352–354 (2013).
[CrossRef]

2012

2010

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express18(2), 694–699 (2010).
[CrossRef] [PubMed]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

2009

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

2008

Y. Dai and J. P. Yao, “Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology,” IEEE J. Quantum Electron.44(10), 938–945 (2008).
[CrossRef]

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
[CrossRef]

2004

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004).
[CrossRef]

2002

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron.8(6), 1358–1365 (2002).
[CrossRef]

1996

D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1–4), 331–350 (1996).
[CrossRef]

1991

P. Zhou and G. S. Lee, “Phase shifted distributed feedback laser with linearly chirped grating for narrow linewidth and high-power operation,” Appl. Phys. Lett.58(4), 331–333 (1991).
[CrossRef]

1990

P. Zhou and G. S. Lee, “Mode selection and spatial hole burning suppression of a chirped grating distributed feedback laser,” Appl. Phys. Lett.56(15), 1400–1402 (1990).
[CrossRef]

1987

S. Akiba, M. Usami, and K. Utaka, “1.5 µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol.5(11), 1564–1573 (1987).
[CrossRef]

Akiba, S.

S. Akiba, M. Usami, and K. Utaka, “1.5 µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol.5(11), 1564–1573 (1987).
[CrossRef]

Baets, R.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
[CrossRef]

Chang-Hasnain, C. J.

Chase, C.

Chen, X.

Cheng, Y.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Dai, Y.

Y. Dai and J. P. Yao, “Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology,” IEEE J. Quantum Electron.44(10), 938–945 (2008).
[CrossRef]

Di Cioccio, L.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
[CrossRef]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Fedeli, J.-M.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
[CrossRef]

Feng, Y.

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Hillmer, H.

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004).
[CrossRef]

Hofmann, W.

Jia, L.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Karagodsky, V.

Kazmierski, C.

K. Lawniczuk, C. Kazmierski, J. Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett.25(4), 352–354 (2013).
[CrossRef]

Kim, J.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron.8(6), 1358–1365 (2002).
[CrossRef]

Kim, S. B.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron.8(6), 1358–1365 (2002).
[CrossRef]

Klepser, B.

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004).
[CrossRef]

Koch, T. L.

D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1–4), 331–350 (1996).
[CrossRef]

Koyama, F.

Lawniczuk, K.

K. Lawniczuk, C. Kazmierski, J. Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett.25(4), 352–354 (2013).
[CrossRef]

Lee, G. S.

P. Zhou and G. S. Lee, “Phase shifted distributed feedback laser with linearly chirped grating for narrow linewidth and high-power operation,” Appl. Phys. Lett.58(4), 331–333 (1991).
[CrossRef]

P. Zhou and G. S. Lee, “Mode selection and spatial hole burning suppression of a chirped grating distributed feedback laser,” Appl. Phys. Lett.56(15), 1400–1402 (1990).
[CrossRef]

Leijtens, X. J. M.

K. Lawniczuk, C. Kazmierski, J. Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett.25(4), 352–354 (2013).
[CrossRef]

Li, J.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Li, L.

Li, S.

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Liu, L.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
[CrossRef]

Liu, R.

Liu, S.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Lu, L.

Lu, Y.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Moss, D. J.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Pesala, B.

Piramidowicz, R.

K. Lawniczuk, C. Kazmierski, J. Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett.25(4), 352–354 (2013).
[CrossRef]

Provost, J.

K. Lawniczuk, C. Kazmierski, J. Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett.25(4), 352–354 (2013).
[CrossRef]

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Regreny, P.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
[CrossRef]

Romeo, P. R.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
[CrossRef]

Ryu, S. W.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron.8(6), 1358–1365 (2002).
[CrossRef]

Seassal, C.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
[CrossRef]

Shi, Y.

Sim, J. S.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron.8(6), 1358–1365 (2002).
[CrossRef]

Smit, M. K.

K. Lawniczuk, C. Kazmierski, J. Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett.25(4), 352–354 (2013).
[CrossRef]

Szczepanski, P.

K. Lawniczuk, C. Kazmierski, J. Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett.25(4), 352–354 (2013).
[CrossRef]

Tennant, D. M.

D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1–4), 331–350 (1996).
[CrossRef]

Usami, M.

S. Akiba, M. Usami, and K. Utaka, “1.5 µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol.5(11), 1564–1573 (1987).
[CrossRef]

Utaka, K.

S. Akiba, M. Usami, and K. Utaka, “1.5 µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol.5(11), 1564–1573 (1987).
[CrossRef]

Van Campenhout, J.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
[CrossRef]

Van Thourhout, D.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
[CrossRef]

Wale, M. J.

K. Lawniczuk, C. Kazmierski, J. Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett.25(4), 352–354 (2013).
[CrossRef]

Yao, J. P.

J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

Y. Dai and J. P. Yao, “Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology,” IEEE J. Quantum Electron.44(10), 938–945 (2008).
[CrossRef]

Yin, Z.

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

Zhou, P.

P. Zhou and G. S. Lee, “Phase shifted distributed feedback laser with linearly chirped grating for narrow linewidth and high-power operation,” Appl. Phys. Lett.58(4), 331–333 (1991).
[CrossRef]

P. Zhou and G. S. Lee, “Mode selection and spatial hole burning suppression of a chirped grating distributed feedback laser,” Appl. Phys. Lett.56(15), 1400–1402 (1990).
[CrossRef]

Zhou, Y.

Appl. Phys. Lett.

P. Zhou and G. S. Lee, “Mode selection and spatial hole burning suppression of a chirped grating distributed feedback laser,” Appl. Phys. Lett.56(15), 1400–1402 (1990).
[CrossRef]

P. Zhou and G. S. Lee, “Phase shifted distributed feedback laser with linearly chirped grating for narrow linewidth and high-power operation,” Appl. Phys. Lett.58(4), 331–333 (1991).
[CrossRef]

IEEE J. Quantum Electron.

H. Hillmer and B. Klepser, “Low-cost edge-emitting DFB laser arrays for DWDM communication systems implemented by bent and titled waveguides,” IEEE J. Quantum Electron.40(10), 1377–1383 (2004).
[CrossRef]

Y. Dai and J. P. Yao, “Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology,” IEEE J. Quantum Electron.44(10), 938–945 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. W. Ryu, S. B. Kim, J. S. Sim, and J. Kim, “Monolithic integration of a multiwavelength laser array associated with asymmetric sampled grating lasers,” IEEE J. Sel. Top. Quantum Electron.8(6), 1358–1365 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Van Campenhout, L. Liu, P. R. Romeo, D. Van Thourhout, C. Seassal, P. Regreny, L. Di Cioccio, J.-M. Fedeli, and R. Baets, “A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks,” IEEE Photon. Technol. Lett.20(16), 1345–1347 (2008).
[CrossRef]

J. Li, Y. Cheng, Z. Yin, L. Jia, X. Chen, S. Liu, S. Li, and Y. Lu, “A multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasing generation and OCDMA en/decoding,” IEEE Photon. Technol. Lett.21(21), 1639–1641 (2009).
[CrossRef]

K. Lawniczuk, C. Kazmierski, J. Provost, M. J. Wale, R. Piramidowicz, P. Szczepanski, M. K. Smit, and X. J. M. Leijtens, “InP-based photonic multiwavelength transmitter with DBR laser array,” IEEE Photon. Technol. Lett.25(4), 352–354 (2013).
[CrossRef]

J. Lightwave Technol.

J. P. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

S. Akiba, M. Usami, and K. Utaka, “1.5 µm λ/4-shifted InGaAsP/InP DFB lasers,” J. Lightwave Technol.5(11), 1564–1573 (1987).
[CrossRef]

Microelectron. Eng.

D. M. Tennant and T. L. Koch, “Fabrication and uniformity issues in λ/4 shifted DFB laser arrays using e-beam generated contact grating masks,” Microelectron. Eng.32(1–4), 331–350 (1996).
[CrossRef]

Nat. Photonics

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. Carroll, J. Whiteaway, and D. Plumb, Distributed feedback semiconductor lasers, 1998, Inst. Elec. Eng.

S. Li, Y. Shi, J. Li, R. Gu, X. Tu, and X. Chen, “Experimental demonstration of the corrugation pitch modulated DFB semiconductor laser based on the reconstruction-equivalent-chirp technology,” Proc. Commun. Photon. Conf. 112–113 (2010).

K. Lawniczuk, M. Wale, P. Szczepanski, R. Piramidowicz, M. Smit, and X. Leijtens, “Photonic multiwavelength transmitters with DBR laser array for optical access networks,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, paper JW2A.35.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the grating structures of an MWL array based on the ECT.

Fig. 2
Fig. 2

(a) Top view of the etched sampled gratings, and (b) cross-section image of the sampled gratings (before the MOCVD overgrowth).

Fig. 3
Fig. 3

(a) Image of the cross section of an ECT-based DFB laser; (b) zoom-in view of the cross section (after the MOCVD overgrowth).

Fig. 4
Fig. 4

Measured spectrum of one laser in the fabricated ECT-based MWL array.

Fig. 5
Fig. 5

The measured P-I curve under different ambient temperatures.

Fig. 6
Fig. 6

Measured optical spectrum of two MWL arrays with different wavelength spacing.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δn( z )= 1 2 s( z )exp( j 2πz Λ )+c.c= 1 2 s 0 [ z φ( z )P 2π ]exp( j 2πz Λ )+c.c
Δn( z )= m 1 2 F m exp[ jmφ( z )+j 2πz Λ m ]+c.c
φ( z )={ 0, L/2z<D/2 π D ×( z+ D 2 ), D/2z<D/2 π, D/2zL/2
P s ={ P, L/2z<D/2 P 1P/2D , D/2z<D/2 P, D/2zL/2
λ L 2 n eff Λ 1 =2 n eff PΛ PΛ

Metrics