Abstract

Electric field induced dynamic reorientation phenomenon of graphene/graphitic flakes in homogeneously aligned nematic liquid crystal (NLC) medium has been demonstrated by optical microscopy. The flakes reorient from parallel to perpendicular configuration with respect to boundary plates of confining cells for an applied field strength of as low as tens of millivolt per micrometer. After field removal the reoriented flakes recover to their initial state with the help of relaxation of NLC. Considering flake reorientation phenomenon both in positive and negative dielectric anisotropy NLCs, the reorientation process depends on interfacial Maxwell–Wagner polarization and NLC director reorientation. We propose a phenomenological model based on electric field induced potential energy of graphitic flakes and coupling contribution of positive NLC to generate the rotational kinetic energy for flake reorientation. The model successfully explains the dependence of flake reorientation time over flake shape anisotropy, electric-field strength, and flake area. Using present operating scheme it is possible to generate dark field-off state and bright field-on state, having application potential for electro-optic light modulation devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N.  Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
    [CrossRef]
  2. T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, “Polymer cholesteric liquid-crystal flake reorientation in an alternating-current electric field,” J. Appl. Phys. 98(1), 013509 (2005).
    [CrossRef]
  3. T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, S. M.  Faris, “Electric-field-induced motion of polymer cholesteric liquid-crystal flakes in a moderately conductive fluid,” Appl. Opt. 41(25), 5362–5366 (2002).
    [CrossRef] [PubMed]
  4. T. Z.  Kosc, K. L.  Marshall, A.  Trajkovska-Petkoska, E.  Kimball, S. D.  Jacobs, “Progress in the development of polymer cholesteric liquid crystal flakes for display applications,” Displays 25(5), 171–176 (2004).
    [CrossRef]
  5. A.  Trajkovska-Petkoska, R.  Varshneya, T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, “Enhanced electro-optic behavior for shaped polymer cholesteric liquid-crystal flakes made using soft lithography,” Adv. Funct. Mater. 15(2), 217–222 (2005).
    [CrossRef]
  6. A. K.  Geim, K. S.  Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [CrossRef] [PubMed]
  7. P.  Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
    [CrossRef] [PubMed]
  8. F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [CrossRef]
  9. P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
    [CrossRef] [PubMed]
  10. K. S.  Novoselov, D.  Jiang, F.  Schedin, T. J.  Booth, V. V.  Khotkevich, S. V.  Morozov, A. K.  Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
    [CrossRef] [PubMed]
  11. K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [CrossRef] [PubMed]
  12. J. C.  Meyer, A. K.  Geim, M. I.  Katsnelson, K. S.  Novoselov, T. J.  Booth, S.  Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
    [CrossRef] [PubMed]
  13. I.  Dierking, G.  Scalia, P.  Morales, D.  Leclere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16(11), 865–869 (2004).
    [CrossRef]
  14. W. W.  Tie, G. H.  Yang, S. S.  Bhattacharyya, Y. H.  Lee, S. H.  Lee, “Electric field induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal,” J. Phys. Chem. C 115(44), 21652–21658 (2011).
    [CrossRef]
  15. O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
    [CrossRef] [PubMed]
  16. Q.  Liu, T.  Asavei, T.  Lee, H.  Rubinsztein-Dunlop, S.  He, I. I.  Smalyukh, “Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles,” Opt. Express 19(25), 25134–25143 (2011).
    [CrossRef] [PubMed]
  17. C. W.  Twombly, J. S.  Evans, I. I.  Smalyukh, “Optical manipulation of self-aligned graphene flakes in liquid crystals,” Opt. Express 21(1), 1324–1334 (2013).
    [CrossRef] [PubMed]
  18. M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010).
    [CrossRef]
  19. N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
    [CrossRef] [PubMed]
  20. S. H.  Aboutalebi, M. M.  Gudarzi, Q. B.  Zheng, J. K.  Kim, “Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions,” Adv. Funct. Mater. 21(15), 2978–2988 (2011).
    [CrossRef]
  21. J. E.  Kim, T. H.  Han, S. H.  Lee, J. Y.  Kim, C. W.  Ahn, J. M.  Yun, S. O.  Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50(13), 3043–3047 (2011).
    [CrossRef] [PubMed]
  22. B.  Dan, N.  Behabtu, A.  Martinez, J. S.  Evans, D. V.  Kosynkin, J. M.  Tour, M.  Pasquali, I. I.  Smalyukh, “Liquid crystals of aqueous, giant graphene oxide flakes,” Soft Matter 7(23), 11154 (2011).
    [CrossRef]
  23. J. A. Stratton, Electromagnetic Theory, International Series in Physics, 1st ed. (McGraw-Hill, New York, 1941).
  24. F.  Brochard, P. G.  de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. France 31(7), 691–708 (1970).
    [CrossRef]
  25. C. J.  Smith, C.  Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007).
    [CrossRef]
  26. R.  Basu, G. S.  Iannacchione, “Carbon nanotube dispersed liquid crystal: A nano electromechanical system,” Appl. Phys. Lett. 93(18), 183105 (2008).
    [CrossRef]

2013 (1)

2011 (5)

Q.  Liu, T.  Asavei, T.  Lee, H.  Rubinsztein-Dunlop, S.  He, I. I.  Smalyukh, “Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles,” Opt. Express 19(25), 25134–25143 (2011).
[CrossRef] [PubMed]

W. W.  Tie, G. H.  Yang, S. S.  Bhattacharyya, Y. H.  Lee, S. H.  Lee, “Electric field induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal,” J. Phys. Chem. C 115(44), 21652–21658 (2011).
[CrossRef]

S. H.  Aboutalebi, M. M.  Gudarzi, Q. B.  Zheng, J. K.  Kim, “Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions,” Adv. Funct. Mater. 21(15), 2978–2988 (2011).
[CrossRef]

J. E.  Kim, T. H.  Han, S. H.  Lee, J. Y.  Kim, C. W.  Ahn, J. M.  Yun, S. O.  Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50(13), 3043–3047 (2011).
[CrossRef] [PubMed]

B.  Dan, N.  Behabtu, A.  Martinez, J. S.  Evans, D. V.  Kosynkin, J. M.  Tour, M.  Pasquali, I. I.  Smalyukh, “Liquid crystals of aqueous, giant graphene oxide flakes,” Soft Matter 7(23), 11154 (2011).
[CrossRef]

2010 (5)

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010).
[CrossRef]

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

P.  Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[CrossRef] [PubMed]

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

2008 (2)

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

R.  Basu, G. S.  Iannacchione, “Carbon nanotube dispersed liquid crystal: A nano electromechanical system,” Appl. Phys. Lett. 93(18), 183105 (2008).
[CrossRef]

2007 (3)

A. K.  Geim, K. S.  Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

C. J.  Smith, C.  Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007).
[CrossRef]

J. C.  Meyer, A. K.  Geim, M. I.  Katsnelson, K. S.  Novoselov, T. J.  Booth, S.  Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[CrossRef] [PubMed]

2005 (3)

A.  Trajkovska-Petkoska, R.  Varshneya, T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, “Enhanced electro-optic behavior for shaped polymer cholesteric liquid-crystal flakes made using soft lithography,” Adv. Funct. Mater. 15(2), 217–222 (2005).
[CrossRef]

K. S.  Novoselov, D.  Jiang, F.  Schedin, T. J.  Booth, V. V.  Khotkevich, S. V.  Morozov, A. K.  Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[CrossRef] [PubMed]

T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, “Polymer cholesteric liquid-crystal flake reorientation in an alternating-current electric field,” J. Appl. Phys. 98(1), 013509 (2005).
[CrossRef]

2004 (3)

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

T. Z.  Kosc, K. L.  Marshall, A.  Trajkovska-Petkoska, E.  Kimball, S. D.  Jacobs, “Progress in the development of polymer cholesteric liquid crystal flakes for display applications,” Displays 25(5), 171–176 (2004).
[CrossRef]

I.  Dierking, G.  Scalia, P.  Morales, D.  Leclere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16(11), 865–869 (2004).
[CrossRef]

2002 (1)

2001 (1)

N.  Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
[CrossRef]

1970 (1)

F.  Brochard, P. G.  de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. France 31(7), 691–708 (1970).
[CrossRef]

Aboutalebi, S. H.

S. H.  Aboutalebi, M. M.  Gudarzi, Q. B.  Zheng, J. K.  Kim, “Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions,” Adv. Funct. Mater. 21(15), 2978–2988 (2011).
[CrossRef]

Ahn, C. W.

J. E.  Kim, T. H.  Han, S. H.  Lee, J. Y.  Kim, C. W.  Ahn, J. M.  Yun, S. O.  Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50(13), 3043–3047 (2011).
[CrossRef] [PubMed]

Asavei, T.

Avouris, P.

P.  Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[CrossRef] [PubMed]

Basu, R.

R.  Basu, G. S.  Iannacchione, “Carbon nanotube dispersed liquid crystal: A nano electromechanical system,” Appl. Phys. Lett. 93(18), 183105 (2008).
[CrossRef]

Behabtu, N.

B.  Dan, N.  Behabtu, A.  Martinez, J. S.  Evans, D. V.  Kosynkin, J. M.  Tour, M.  Pasquali, I. I.  Smalyukh, “Liquid crystals of aqueous, giant graphene oxide flakes,” Soft Matter 7(23), 11154 (2011).
[CrossRef]

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Bhattacharyya, S. S.

W. W.  Tie, G. H.  Yang, S. S.  Bhattacharyya, Y. H.  Lee, S. H.  Lee, “Electric field induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal,” J. Phys. Chem. C 115(44), 21652–21658 (2011).
[CrossRef]

Blake, P.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

Bonaccorso, F.

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Booth, T. J.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

J. C.  Meyer, A. K.  Geim, M. I.  Katsnelson, K. S.  Novoselov, T. J.  Booth, S.  Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[CrossRef] [PubMed]

K. S.  Novoselov, D.  Jiang, F.  Schedin, T. J.  Booth, V. V.  Khotkevich, S. V.  Morozov, A. K.  Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[CrossRef] [PubMed]

Borghese, F.

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Brimicombe, P. D.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

Brochard, F.

F.  Brochard, P. G.  de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. France 31(7), 691–708 (1970).
[CrossRef]

Calogero, G.

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Cohen, Y.

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Cui, Y.

M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010).
[CrossRef]

Dan, B.

B.  Dan, N.  Behabtu, A.  Martinez, J. S.  Evans, D. V.  Kosynkin, J. M.  Tour, M.  Pasquali, I. I.  Smalyukh, “Liquid crystals of aqueous, giant graphene oxide flakes,” Soft Matter 7(23), 11154 (2011).
[CrossRef]

de Gennes, P. G.

F.  Brochard, P. G.  de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. France 31(7), 691–708 (1970).
[CrossRef]

Denniston, C.

C. J.  Smith, C.  Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007).
[CrossRef]

Denti, P.

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Dierking, I.

I.  Dierking, G.  Scalia, P.  Morales, D.  Leclere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16(11), 865–869 (2004).
[CrossRef]

Dubonos, S. V.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Evans, J. S.

C. W.  Twombly, J. S.  Evans, I. I.  Smalyukh, “Optical manipulation of self-aligned graphene flakes in liquid crystals,” Opt. Express 21(1), 1324–1334 (2013).
[CrossRef] [PubMed]

B.  Dan, N.  Behabtu, A.  Martinez, J. S.  Evans, D. V.  Kosynkin, J. M.  Tour, M.  Pasquali, I. I.  Smalyukh, “Liquid crystals of aqueous, giant graphene oxide flakes,” Soft Matter 7(23), 11154 (2011).
[CrossRef]

Faris, S. M.

Ferrari, A. C.

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Firsov, A. A.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Geim, A. K.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

J. C.  Meyer, A. K.  Geim, M. I.  Katsnelson, K. S.  Novoselov, T. J.  Booth, S.  Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[CrossRef] [PubMed]

A. K.  Geim, K. S.  Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

K. S.  Novoselov, D.  Jiang, F.  Schedin, T. J.  Booth, V. V.  Khotkevich, S. V.  Morozov, A. K.  Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[CrossRef] [PubMed]

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Gleeson, H. F.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

Green, M. J.

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Grigorieva, I. V.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Gucciardi, P. G.

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Gudarzi, M. M.

S. H.  Aboutalebi, M. M.  Gudarzi, Q. B.  Zheng, J. K.  Kim, “Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions,” Adv. Funct. Mater. 21(15), 2978–2988 (2011).
[CrossRef]

Han, T. H.

J. E.  Kim, T. H.  Han, S. H.  Lee, J. Y.  Kim, C. W.  Ahn, J. M.  Yun, S. O.  Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50(13), 3043–3047 (2011).
[CrossRef] [PubMed]

Hasan, T.

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

He, S.

Higginbotham, A. L.

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Hill, E. W.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

Iannacchione, G. S.

R.  Basu, G. S.  Iannacchione, “Carbon nanotube dispersed liquid crystal: A nano electromechanical system,” Appl. Phys. Lett. 93(18), 183105 (2008).
[CrossRef]

Iatì, M. A.

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Jacobs, S. D.

T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, “Polymer cholesteric liquid-crystal flake reorientation in an alternating-current electric field,” J. Appl. Phys. 98(1), 013509 (2005).
[CrossRef]

A.  Trajkovska-Petkoska, R.  Varshneya, T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, “Enhanced electro-optic behavior for shaped polymer cholesteric liquid-crystal flakes made using soft lithography,” Adv. Funct. Mater. 15(2), 217–222 (2005).
[CrossRef]

T. Z.  Kosc, K. L.  Marshall, A.  Trajkovska-Petkoska, E.  Kimball, S. D.  Jacobs, “Progress in the development of polymer cholesteric liquid crystal flakes for display applications,” Displays 25(5), 171–176 (2004).
[CrossRef]

T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, S. M.  Faris, “Electric-field-induced motion of polymer cholesteric liquid-crystal flakes in a moderately conductive fluid,” Appl. Opt. 41(25), 5362–5366 (2002).
[CrossRef] [PubMed]

Jeong, H. K.

M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010).
[CrossRef]

Jiang, D.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

K. S.  Novoselov, D.  Jiang, F.  Schedin, T. J.  Booth, V. V.  Khotkevich, S. V.  Morozov, A. K.  Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[CrossRef] [PubMed]

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Jin, M. H.

M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010).
[CrossRef]

Jones, P. H.

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Katsnelson, M. I.

J. C.  Meyer, A. K.  Geim, M. I.  Katsnelson, K. S.  Novoselov, T. J.  Booth, S.  Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[CrossRef] [PubMed]

Kesselman, E.

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Khotkevich, V. V.

K. S.  Novoselov, D.  Jiang, F.  Schedin, T. J.  Booth, V. V.  Khotkevich, S. V.  Morozov, A. K.  Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[CrossRef] [PubMed]

Kim, J. E.

J. E.  Kim, T. H.  Han, S. H.  Lee, J. Y.  Kim, C. W.  Ahn, J. M.  Yun, S. O.  Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50(13), 3043–3047 (2011).
[CrossRef] [PubMed]

Kim, J. K.

S. H.  Aboutalebi, M. M.  Gudarzi, Q. B.  Zheng, J. K.  Kim, “Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions,” Adv. Funct. Mater. 21(15), 2978–2988 (2011).
[CrossRef]

Kim, J. Y.

J. E.  Kim, T. H.  Han, S. H.  Lee, J. Y.  Kim, C. W.  Ahn, J. M.  Yun, S. O.  Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50(13), 3043–3047 (2011).
[CrossRef] [PubMed]

Kim, S. O.

J. E.  Kim, T. H.  Han, S. H.  Lee, J. Y.  Kim, C. W.  Ahn, J. M.  Yun, S. O.  Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50(13), 3043–3047 (2011).
[CrossRef] [PubMed]

Kim, T. H.

M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010).
[CrossRef]

Kimball, E.

T. Z.  Kosc, K. L.  Marshall, A.  Trajkovska-Petkoska, E.  Kimball, S. D.  Jacobs, “Progress in the development of polymer cholesteric liquid crystal flakes for display applications,” Displays 25(5), 171–176 (2004).
[CrossRef]

Kosc, T. Z.

T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, “Polymer cholesteric liquid-crystal flake reorientation in an alternating-current electric field,” J. Appl. Phys. 98(1), 013509 (2005).
[CrossRef]

A.  Trajkovska-Petkoska, R.  Varshneya, T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, “Enhanced electro-optic behavior for shaped polymer cholesteric liquid-crystal flakes made using soft lithography,” Adv. Funct. Mater. 15(2), 217–222 (2005).
[CrossRef]

T. Z.  Kosc, K. L.  Marshall, A.  Trajkovska-Petkoska, E.  Kimball, S. D.  Jacobs, “Progress in the development of polymer cholesteric liquid crystal flakes for display applications,” Displays 25(5), 171–176 (2004).
[CrossRef]

T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, S. M.  Faris, “Electric-field-induced motion of polymer cholesteric liquid-crystal flakes in a moderately conductive fluid,” Appl. Opt. 41(25), 5362–5366 (2002).
[CrossRef] [PubMed]

Kosynkin, D. V.

B.  Dan, N.  Behabtu, A.  Martinez, J. S.  Evans, D. V.  Kosynkin, J. M.  Tour, M.  Pasquali, I. I.  Smalyukh, “Liquid crystals of aqueous, giant graphene oxide flakes,” Soft Matter 7(23), 11154 (2011).
[CrossRef]

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Lambropoulos, J. C.

T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, “Polymer cholesteric liquid-crystal flake reorientation in an alternating-current electric field,” J. Appl. Phys. 98(1), 013509 (2005).
[CrossRef]

T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, S. M.  Faris, “Electric-field-induced motion of polymer cholesteric liquid-crystal flakes in a moderately conductive fluid,” Appl. Opt. 41(25), 5362–5366 (2002).
[CrossRef] [PubMed]

Leclere, D.

I.  Dierking, G.  Scalia, P.  Morales, D.  Leclere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16(11), 865–869 (2004).
[CrossRef]

Lee, S. H.

W. W.  Tie, G. H.  Yang, S. S.  Bhattacharyya, Y. H.  Lee, S. H.  Lee, “Electric field induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal,” J. Phys. Chem. C 115(44), 21652–21658 (2011).
[CrossRef]

J. E.  Kim, T. H.  Han, S. H.  Lee, J. Y.  Kim, C. W.  Ahn, J. M.  Yun, S. O.  Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50(13), 3043–3047 (2011).
[CrossRef] [PubMed]

Lee, T.

Lee, Y. H.

W. W.  Tie, G. H.  Yang, S. S.  Bhattacharyya, Y. H.  Lee, S. H.  Lee, “Electric field induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal,” J. Phys. Chem. C 115(44), 21652–21658 (2011).
[CrossRef]

M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010).
[CrossRef]

Liu, Q.

Lomeda, J. R.

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Maragó, O. M.

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Marshall, K. L.

T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, “Polymer cholesteric liquid-crystal flake reorientation in an alternating-current electric field,” J. Appl. Phys. 98(1), 013509 (2005).
[CrossRef]

A.  Trajkovska-Petkoska, R.  Varshneya, T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, “Enhanced electro-optic behavior for shaped polymer cholesteric liquid-crystal flakes made using soft lithography,” Adv. Funct. Mater. 15(2), 217–222 (2005).
[CrossRef]

T. Z.  Kosc, K. L.  Marshall, A.  Trajkovska-Petkoska, E.  Kimball, S. D.  Jacobs, “Progress in the development of polymer cholesteric liquid crystal flakes for display applications,” Displays 25(5), 171–176 (2004).
[CrossRef]

T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, S. M.  Faris, “Electric-field-induced motion of polymer cholesteric liquid-crystal flakes in a moderately conductive fluid,” Appl. Opt. 41(25), 5362–5366 (2002).
[CrossRef] [PubMed]

Martinez, A.

B.  Dan, N.  Behabtu, A.  Martinez, J. S.  Evans, D. V.  Kosynkin, J. M.  Tour, M.  Pasquali, I. I.  Smalyukh, “Liquid crystals of aqueous, giant graphene oxide flakes,” Soft Matter 7(23), 11154 (2011).
[CrossRef]

Meyer, J. C.

J. C.  Meyer, A. K.  Geim, M. I.  Katsnelson, K. S.  Novoselov, T. J.  Booth, S.  Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[CrossRef] [PubMed]

Morales, P.

I.  Dierking, G.  Scalia, P.  Morales, D.  Leclere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16(11), 865–869 (2004).
[CrossRef]

Morozov, S. V.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

K. S.  Novoselov, D.  Jiang, F.  Schedin, T. J.  Booth, V. V.  Khotkevich, S. V.  Morozov, A. K.  Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[CrossRef] [PubMed]

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Nair, R. R.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

Nicolosi, V.

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Novoselov, K. S.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

J. C.  Meyer, A. K.  Geim, M. I.  Katsnelson, K. S.  Novoselov, T. J.  Booth, S.  Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[CrossRef] [PubMed]

A. K.  Geim, K. S.  Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

K. S.  Novoselov, D.  Jiang, F.  Schedin, T. J.  Booth, V. V.  Khotkevich, S. V.  Morozov, A. K.  Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[CrossRef] [PubMed]

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Parra-Vasquez, A. N. G.

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Pasquali, M.

B.  Dan, N.  Behabtu, A.  Martinez, J. S.  Evans, D. V.  Kosynkin, J. M.  Tour, M.  Pasquali, I. I.  Smalyukh, “Liquid crystals of aqueous, giant graphene oxide flakes,” Soft Matter 7(23), 11154 (2011).
[CrossRef]

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Ponomarenko, L. A.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

Privitera, G.

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Ra, E. J.

M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010).
[CrossRef]

Roth, S.

J. C.  Meyer, A. K.  Geim, M. I.  Katsnelson, K. S.  Novoselov, T. J.  Booth, S.  Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

Saija, R.

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Scalia, G.

I.  Dierking, G.  Scalia, P.  Morales, D.  Leclere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16(11), 865–869 (2004).
[CrossRef]

Schedin, F.

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

K. S.  Novoselov, D.  Jiang, F.  Schedin, T. J.  Booth, V. V.  Khotkevich, S. V.  Morozov, A. K.  Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[CrossRef] [PubMed]

Schmidt, J.

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Sinitskii, A.

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Smalyukh, I. I.

Smith, C. J.

C. J.  Smith, C.  Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007).
[CrossRef]

So, K. P.

M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010).
[CrossRef]

Sun, Z.

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Talmon, Y.

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Tamaoki, N.

N.  Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
[CrossRef]

Tie, W. W.

W. W.  Tie, G. H.  Yang, S. S.  Bhattacharyya, Y. H.  Lee, S. H.  Lee, “Electric field induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal,” J. Phys. Chem. C 115(44), 21652–21658 (2011).
[CrossRef]

Tour, J. M.

B.  Dan, N.  Behabtu, A.  Martinez, J. S.  Evans, D. V.  Kosynkin, J. M.  Tour, M.  Pasquali, I. I.  Smalyukh, “Liquid crystals of aqueous, giant graphene oxide flakes,” Soft Matter 7(23), 11154 (2011).
[CrossRef]

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Trajkovska-Petkoska, A.

A.  Trajkovska-Petkoska, R.  Varshneya, T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, “Enhanced electro-optic behavior for shaped polymer cholesteric liquid-crystal flakes made using soft lithography,” Adv. Funct. Mater. 15(2), 217–222 (2005).
[CrossRef]

T. Z.  Kosc, K. L.  Marshall, A.  Trajkovska-Petkoska, E.  Kimball, S. D.  Jacobs, “Progress in the development of polymer cholesteric liquid crystal flakes for display applications,” Displays 25(5), 171–176 (2004).
[CrossRef]

Tsentalovich, D.

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Twombly, C. W.

Varshneya, R.

A.  Trajkovska-Petkoska, R.  Varshneya, T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, “Enhanced electro-optic behavior for shaped polymer cholesteric liquid-crystal flakes made using soft lithography,” Adv. Funct. Mater. 15(2), 217–222 (2005).
[CrossRef]

Yang, G. H.

W. W.  Tie, G. H.  Yang, S. S.  Bhattacharyya, Y. H.  Lee, S. H.  Lee, “Electric field induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal,” J. Phys. Chem. C 115(44), 21652–21658 (2011).
[CrossRef]

Yu, W. J.

M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010).
[CrossRef]

Yun, J. M.

J. E.  Kim, T. H.  Han, S. H.  Lee, J. Y.  Kim, C. W.  Ahn, J. M.  Yun, S. O.  Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50(13), 3043–3047 (2011).
[CrossRef] [PubMed]

Zhang, Y.

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Zheng, Q. B.

S. H.  Aboutalebi, M. M.  Gudarzi, Q. B.  Zheng, J. K.  Kim, “Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions,” Adv. Funct. Mater. 21(15), 2978–2988 (2011).
[CrossRef]

ACS Nano (1)

O. M.  Maragó, F.  Bonaccorso, R.  Saija, G.  Privitera, P. G.  Gucciardi, M. A.  Iatì, G.  Calogero, P. H.  Jones, F.  Borghese, P.  Denti, V.  Nicolosi, A. C.  Ferrari, “Brownian motion of graphene,” ACS Nano 4(12), 7515–7523 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater. (2)

S. H.  Aboutalebi, M. M.  Gudarzi, Q. B.  Zheng, J. K.  Kim, “Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions,” Adv. Funct. Mater. 21(15), 2978–2988 (2011).
[CrossRef]

A.  Trajkovska-Petkoska, R.  Varshneya, T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, “Enhanced electro-optic behavior for shaped polymer cholesteric liquid-crystal flakes made using soft lithography,” Adv. Funct. Mater. 15(2), 217–222 (2005).
[CrossRef]

Adv. Mater. (2)

I.  Dierking, G.  Scalia, P.  Morales, D.  Leclere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Adv. Mater. 16(11), 865–869 (2004).
[CrossRef]

N.  Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. 13(15), 1135–1147 (2001).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

J. E.  Kim, T. H.  Han, S. H.  Lee, J. Y.  Kim, C. W.  Ahn, J. M.  Yun, S. O.  Kim, “Graphene oxide liquid crystals,” Angew. Chem. Int. Ed. Engl. 50(13), 3043–3047 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R.  Basu, G. S.  Iannacchione, “Carbon nanotube dispersed liquid crystal: A nano electromechanical system,” Appl. Phys. Lett. 93(18), 183105 (2008).
[CrossRef]

Displays (1)

T. Z.  Kosc, K. L.  Marshall, A.  Trajkovska-Petkoska, E.  Kimball, S. D.  Jacobs, “Progress in the development of polymer cholesteric liquid crystal flakes for display applications,” Displays 25(5), 171–176 (2004).
[CrossRef]

J. Appl. Phys. (2)

T. Z.  Kosc, K. L.  Marshall, S. D.  Jacobs, J. C.  Lambropoulos, “Polymer cholesteric liquid-crystal flake reorientation in an alternating-current electric field,” J. Appl. Phys. 98(1), 013509 (2005).
[CrossRef]

C. J.  Smith, C.  Denniston, “Elastic response of a nematic liquid crystal to an immersed nanowire,” J. Appl. Phys. 101(1), 014305 (2007).
[CrossRef]

J. Phys. Chem. C (1)

W. W.  Tie, G. H.  Yang, S. S.  Bhattacharyya, Y. H.  Lee, S. H.  Lee, “Electric field induced dispersion of multiwalled carbon nanotubes in nematic liquid crystal,” J. Phys. Chem. C 115(44), 21652–21658 (2011).
[CrossRef]

J. Phys. D Appl. Phys. (1)

M. H.  Jin, H. K.  Jeong, T. H.  Kim, K. P.  So, Y.  Cui, W. J.  Yu, E. J.  Ra, Y. H.  Lee, “Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature,” J. Phys. D Appl. Phys. 43(27), 275402 (2010).
[CrossRef]

J. Phys. France (1)

F.  Brochard, P. G.  de Gennes, “Theory of magnetic suspensions in liquid crystals,” J. Phys. France 31(7), 691–708 (1970).
[CrossRef]

Nano Lett. (2)

P.  Blake, P. D.  Brimicombe, R. R.  Nair, T. J.  Booth, D.  Jiang, F.  Schedin, L. A.  Ponomarenko, S. V.  Morozov, H. F.  Gleeson, E. W.  Hill, A. K.  Geim, K. S.  Novoselov, “Graphene-based liquid crystal device,” Nano Lett. 8(6), 1704–1708 (2008).
[CrossRef] [PubMed]

P.  Avouris, “Graphene: Electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

A. K.  Geim, K. S.  Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

N.  Behabtu, J. R.  Lomeda, M. J.  Green, A. L.  Higginbotham, A.  Sinitskii, D. V.  Kosynkin, D.  Tsentalovich, A. N. G.  Parra-Vasquez, J.  Schmidt, E.  Kesselman, Y.  Cohen, Y.  Talmon, J. M.  Tour, M.  Pasquali, “Spontaneous high-concentration dispersions and liquid crystals of graphene,” Nat. Nanotechnol. 5(6), 406–411 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

F.  Bonaccorso, Z.  Sun, T.  Hasan, A. C.  Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Nature (1)

J. C.  Meyer, A. K.  Geim, M. I.  Katsnelson, K. S.  Novoselov, T. J.  Booth, S.  Roth, “The structure of suspended graphene sheets,” Nature 446(7131), 60–63 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

K. S.  Novoselov, D.  Jiang, F.  Schedin, T. J.  Booth, V. V.  Khotkevich, S. V.  Morozov, A. K.  Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci. U.S.A. 102(30), 10451–10453 (2005).
[CrossRef] [PubMed]

Science (1)

K. S.  Novoselov, A. K.  Geim, S. V.  Morozov, D.  Jiang, Y.  Zhang, S. V.  Dubonos, I. V.  Grigorieva, A. A.  Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Soft Matter (1)

B.  Dan, N.  Behabtu, A.  Martinez, J. S.  Evans, D. V.  Kosynkin, J. M.  Tour, M.  Pasquali, I. I.  Smalyukh, “Liquid crystals of aqueous, giant graphene oxide flakes,” Soft Matter 7(23), 11154 (2011).
[CrossRef]

Other (1)

J. A. Stratton, Electromagnetic Theory, International Series in Physics, 1st ed. (McGraw-Hill, New York, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Pictorial representation of the configuration of graphitic flake in nematic liquid crystals in order to realize reorientation.

Fig. 2
Fig. 2

An electro-optic response of graphitic flake display: In positive NLC, flake lies parallel to the cell substrate before applying an electric field, blocking the incident light (a) and the flake is oriented nearly perpendicular to the cell substrate after applying vertical electric field and allows optical transmission, respectively (b). Note that the applied electric field is normal to the cell plane. In negative NLC, a flake aligns parallel to the cell substrate before applying an electric field, blocking the incident light (c) and in field on state, the flake reorients along the field direction (d). However, the LC deformation is minimal since the NLC with negative dielectric anisotropy prefers orientation perpendicular to the field direction. Hence, once the flake is orientated along the field direction, the flake does not completely relax to the initial state because there is no triggering force to rotate the flake to the original state. (e,f) Optical microphotographs exhibiting reorientation of a representative graphitic flake as a function of applied electric field in negative dielectric anisotropy liquid crystal. (e) Switching field on: Following the arrow from left to right: 0 mV/μm, 14.0 mV/μm, 28.0 mV/μm, 42.0 mV/μm, 57.0 mV/μm, 71.0 mV/μm, 85.0 mV/μm, 100.0 mV/μm, 114.0 mV/μm, 128.0 mV/μm, 142.0 mV/μm; (f) Switching field off: Following the arrow from left to right: field off 1 sec, field off 2 sec, field off 3 sec, field off 4 sec, field off 5 sec, field off 6 sec, respectively. (The labelled black arrow in the images indicates the easy axis of flake).

Fig. 3
Fig. 3

Optical microphotographs of response time of two representative graphene/graphitic flakes with different stacked-layers with and without field of 85 mV/µm in positive dielectric anisotropy nematic liquid crystal medium. (a,b) Rising and relaxing process of flake (case 1): (a) Rising process: According to the arrow from left to right: field on 0 sec, field on 0.5 sec, field on 0.7 sec, field on 0.9 sec, field on 1.1 sec, field on 1.3 sec, field on 1.5 sec, respectively. (b) Relaxing process: According to the arrow from left to right: field off 0 sec, field off 1 sec, field off 2 sec, field off 3 sec, 4 sec, 5 sec, 6 sec, respectively. (c,d) Rising and relaxing process of flake (case 2): (c) Rising process: According to the arrow from left to right: field on 0 sec, field on 0.3 sec, field on 0.5 sec, field on 0.7 sec, field on 0.9 sec, field on 1.1 sec, field on 1.3 sec, respectively. (d) Relaxing process: According to the arrow from left to right: field off 0 sec, field off 1 sec, field off 2 sec, field off 3 sec, 4 sec, 5 sec, 5.5 sec, respectively. (e) The relationship of the response time of the abovementioned flakes as a function of applied field. (Case 1: Aspect ratio: 1: 1, Flake area: 85 µm2; Case 2: Aspect ratio: 2: 1, Flake area: 75 µm2).

Fig. 4
Fig. 4

Optical microphotographs (a, b) of reorientation of a representative graphitic flake with respect to electric field in positive dielectric anisotropic nematic liquid crystal medium. (a) Switching field on: According to the arrow from left to right, the applied field is 0 mV/μm, 7.0 mV/μm, 14.0 mV/μm, 21.0 mV/μm, 35.0 mV/μm, 42.0 mV/μm, 57.0 mV/μm, 71.0 mV/μm, 85.0 mV/μm, 114.0 mV/μm, 142.0 mV/μm. respectively; (b) Switching field on: According to the arrow from left to right: field off 1 sec, field off 2 sec, field off 3 sec, field off 4 sec, field off 5 sec, field off 6 sec, respectively. (c,d) Transmitted light intensity of flake reorientation which corresponds to optical microphotographs of Figs. 4(a),4(b).

Fig. 5
Fig. 5

The relationship of reorientation time of a representative flake with aspect ratio of 2: 1 as function of frequency (a) and the reorientation time of various flakes with different aspect ratio as function of frequency at specified electric field for flake area fixed between 140 - 150 µm2 (b).

Fig. 6
Fig. 6

The relationship of the averaged reorientation time of several graphitic flakes as a function of applied field. (Case I: Aspect ratio: 2.6: 1, Flake area: 85 µm2; Case II: Aspect ratio: 2: 1, Flake area: 65 µm2; Case III: Aspect ratio: 3.6: 1, Flake area: 20 µm2).

Fig. 7
Fig. 7

The relationship of reorientation time of flakes as function of graphitic flake area. (The labelled arabic numerals in the picture indicate aspect ratio).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

p i =( ε p ε h ) E i +
E i + = ε h E 0i ε h + A i ( ε ii ε h )
A i = a i a j a k 2 0 ds ( s+ a i 2 ) ( s+ a i 2 )( s+ a j 2 )( s+ a k 2 )
p i = 4π 3 a i a j a k P i = 4π 3 a i a j a k ε h K i E 0i
K i = ( ε p ε h ) [ ε h + A i ( ε p ε h ) ]
V 1 = 0 E 0i p i dE= 2π 3 a i a j a k ε h K i E 0i 2
V 1 = 2π 3 a i a j a k ε h K i E 0 2 Cos 2 θ
V 2 =AK θ 2
L= I x ( θ ˙ ) 2 2 + 2π 3 a i a j a k K i E 0 2 cos 2 θAK θ 2
P= 1 2 η θ ˙ 2
I x =ρ I x =ρa R gx 2
(ρa R gx 2 ) θ ¨ +η θ ˙ +[ 4π 3 a i a j a k K i E 0 2 +2AK ]θ=0
T= 2π ρa R gx ( 4π 3 a i a j a k K i E 0 2 +2AK ) η 2 4ρa R gx 2

Metrics