Abstract

We demonstrate wavelength conversion based on four-wave mixing in a semiconductor optical amplifier of signals with quadrature amplitude modulation (QAM). We first demonstrate wavelength conversion of 16 Gbaud 16-QAM signals over the entire C-band using two co-polarized pumps with low power penalty at the forward error correction threshold (FEC) for a wide range of input optical-signal-to-noise-ratio (OSNR). We also demonstrate for the first time wavelength conversion of 5 Gbaud 64-QAM signals in a semiconductor optical amplifier with bit-error rate below the FEC threshold over the entire C-band and investigate the dependence of the power penalty on input OSNR with a single pump configuration.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.29(4), 373–377 (2011).
    [CrossRef]
  2. C. Tremblay, A. Enriquez-Castillo, M. P. Belanger, and F. Gagnon, “Filterless WDM optical core networks based on coherent systems,” in Proceedings of International Conference on Transparent Optical Networks, Stockholm, Sweden, 2011, paper Tu.D1.4.
    [CrossRef]
  3. S. R. Nuccio, Z. Bakhtiari, O. F. Yilmaz, and A. E. Willner, “λ-conversion of 160-Gbit/s PDM 16-QAM using a single periodically-poled lithium niobate waveguide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America 2011), paper OWG5.
    [CrossRef]
  4. R. Elschner, T. Richter, M. Nölle, J. Hilt, and C. Schubert, “Parametric amplification of 28-GBd NRZ-16QAM signals,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America 2011), paper OThC2.
  5. A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, J.-Y. Dupuy, and S. Radic, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America 2012), paper Th.2.F.2.
    [CrossRef]
  6. A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” J. Quantum Electron.31(4), 689–699 (1995).
    [CrossRef]
  7. I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett.72(20), 2499–2501 (1998).
    [CrossRef]
  8. B. Filion, A. T. Nguyen, S. Amiralizadeh, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America 2013), paper OTh1C.5.
    [CrossRef]
  9. J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol.25(3), 891–900 (2007).
    [CrossRef]
  10. M. J. Connelly and C. L. Janer, “Modeling of semiconductor optical amplifier RIN and phase noise for optical PSK systems,” in Proceedings of Numerical Simulation of Optoelectronic Devices, Rome, Italy, 2011, pp. 95–96.
  11. R. Elschner and K. Petermann, “Pump-induced nonlinear phase noise in wavelength converters based on four-wave mixing in SOAs,” in Proceedings of IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, Belek-Antalya, 2009), pp. 779–780.
    [CrossRef]
  12. C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
    [CrossRef]
  13. X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” J. Quantum Electron.41(4), 554–561 (2005).
    [CrossRef]
  14. T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE95(9), 1757–1766 (2007).
    [CrossRef]
  15. T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric highly efficient (~0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers,” IEEE Photon. Technol. Lett.14(8), 1139–1141 (2002).
    [CrossRef]
  16. G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett.25(9), 791–794 (2013).
    [CrossRef]
  17. G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express20(25), 27902–27907 (2012).
    [CrossRef] [PubMed]
  18. A. J. Zilkie, J. Meier, M. Mojahedi, A. S. Helmy, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, and J. S. Aitchison, “Time-resolved linewidth enhancement factors in quantum dot and higher-dimensional semiconductor amplifiers operating at 1.55 µm,” J. Lightwave Technol.26(11), 1498–1509 (2008).
    [CrossRef]
  19. N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008).
    [CrossRef]
  20. M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photon. Technol. Lett.23(10), 615–617 (2011).
    [CrossRef]
  21. M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in European Conference and Exhibition on Optical Communication, Vienna, Austria, paper P3.08 (2009).
  22. S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum-likelihood phase estimation in coherent M-ary phase-shift keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
    [CrossRef]
  23. J. G. Proakis and D. K. Manolakis, in Digital Signal Processing: Principles, Algorithms and Applications, (Prentice Hall, 1995).
  24. W.-R. Peng, T. Tsuritani, and I. Morita, “Transmission of high-baud PDM-64QAM signals,” J. Lightwave Technol.31(13), 2146–2162 (2013).
    [CrossRef]
  25. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
    [CrossRef]
  26. A. Ghazisaeidi and L. Rusch, “On the efficiency of digital back-propagation for mitigating SOA-induced nonlinear impairments,” J. Lightwave Technol.29(21), 3331–3339 (2011).
    [CrossRef]

2013 (2)

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett.25(9), 791–794 (2013).
[CrossRef]

W.-R. Peng, T. Tsuritani, and I. Morita, “Transmission of high-baud PDM-64QAM signals,” J. Lightwave Technol.31(13), 2146–2162 (2013).
[CrossRef]

2012 (3)

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express20(25), 27902–27907 (2012).
[CrossRef] [PubMed]

2011 (3)

2009 (1)

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum-likelihood phase estimation in coherent M-ary phase-shift keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

2008 (2)

A. J. Zilkie, J. Meier, M. Mojahedi, A. S. Helmy, P. J. Poole, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, and J. S. Aitchison, “Time-resolved linewidth enhancement factors in quantum dot and higher-dimensional semiconductor amplifiers operating at 1.55 µm,” J. Lightwave Technol.26(11), 1498–1509 (2008).
[CrossRef]

N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008).
[CrossRef]

2007 (2)

2005 (1)

X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” J. Quantum Electron.41(4), 554–561 (2005).
[CrossRef]

2002 (1)

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric highly efficient (~0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers,” IEEE Photon. Technol. Lett.14(8), 1139–1141 (2002).
[CrossRef]

1998 (1)

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett.72(20), 2499–2501 (1998).
[CrossRef]

1995 (1)

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” J. Quantum Electron.31(4), 689–699 (1995).
[CrossRef]

Aitchison, J. S.

Akiyama, T.

N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008).
[CrossRef]

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE95(9), 1757–1766 (2007).
[CrossRef]

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric highly efficient (~0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers,” IEEE Photon. Technol. Lett.14(8), 1139–1141 (2002).
[CrossRef]

Arakawa, Y.

N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008).
[CrossRef]

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE95(9), 1757–1766 (2007).
[CrossRef]

Barrios, P.

Becker, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Bogoni, A.

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
[CrossRef]

Caroubalos, C.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett.72(20), 2499–2501 (1998).
[CrossRef]

Chandrasekhar, S.

Chen, J.

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum-likelihood phase estimation in coherent M-ary phase-shift keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

Contestabile, G.

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett.25(9), 791–794 (2013).
[CrossRef]

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express20(25), 27902–27907 (2012).
[CrossRef] [PubMed]

D’Ottavi, A.

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” J. Quantum Electron.31(4), 689–699 (1995).
[CrossRef]

Dreschmann, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Ebe, H.

N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008).
[CrossRef]

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric highly efficient (~0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers,” IEEE Photon. Technol. Lett.14(8), 1139–1141 (2002).
[CrossRef]

Ekawa, M.

N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008).
[CrossRef]

Freude, W.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol.25(3), 891–900 (2007).
[CrossRef]

Ghazisaeidi, A.

Gnauck, A. H.

Hatori, N.

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric highly efficient (~0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers,” IEEE Photon. Technol. Lett.14(8), 1139–1141 (2002).
[CrossRef]

Helmy, A. S.

Hillerkuss, D.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Huebner, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Iannone, E.

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” J. Quantum Electron.31(4), 689–699 (1995).
[CrossRef]

Josten, A.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Kam, P. Y.

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum-likelihood phase estimation in coherent M-ary phase-shift keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

Kawaguchi, K.

N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008).
[CrossRef]

Kishi, N.

M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photon. Technol. Lett.23(10), 615–617 (2011).
[CrossRef]

Kitayama, K.

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett.25(9), 791–794 (2013).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express20(25), 27902–27907 (2012).
[CrossRef] [PubMed]

Koenig, S.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Koos, C.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Kuwatsuka, H.

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric highly efficient (~0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers,” IEEE Photon. Technol. Lett.14(8), 1139–1141 (2002).
[CrossRef]

Leuthold, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol.25(3), 891–900 (2007).
[CrossRef]

Liu, X.

Maitra, A.

Malloy, K. J.

Maruta, A.

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett.25(9), 791–794 (2013).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express20(25), 27902–27907 (2012).
[CrossRef] [PubMed]

Matsuura, M.

M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photon. Technol. Lett.23(10), 615–617 (2011).
[CrossRef]

Mecozzi, A.

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” J. Quantum Electron.31(4), 689–699 (1995).
[CrossRef]

Meier, J.

Meyer, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Mojahedi, M.

Morita, I.

Morito, K.

N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008).
[CrossRef]

Nakata, Y.

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric highly efficient (~0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers,” IEEE Photon. Technol. Lett.14(8), 1139–1141 (2002).
[CrossRef]

Nebendahl, B.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Peckham, D. W.

Peng, W.-R.

Poitras, D.

Poole, P. J.

Porzi, C.

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
[CrossRef]

Poulton, C. G.

Roditi, E.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett.72(20), 2499–2501 (1998).
[CrossRef]

Rotter, T. J.

Rusch, L.

Schmogrow, R.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Scotti, S.

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” J. Quantum Electron.31(4), 689–699 (1995).
[CrossRef]

Smith, P. W. E.

Spano, P.

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” J. Quantum Electron.31(4), 689–699 (1995).
[CrossRef]

Sphicopoulos, T.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett.72(20), 2499–2501 (1998).
[CrossRef]

Stintz, A.

Sugawara, M.

N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008).
[CrossRef]

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE95(9), 1757–1766 (2007).
[CrossRef]

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric highly efficient (~0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers,” IEEE Photon. Technol. Lett.14(8), 1139–1141 (2002).
[CrossRef]

Syvridis, D.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett.72(20), 2499–2501 (1998).
[CrossRef]

Tomkos, I.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett.72(20), 2499–2501 (1998).
[CrossRef]

Tsuritani, T.

Wang, J.

Wei, X.

X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” J. Quantum Electron.41(4), 554–561 (2005).
[CrossRef]

Winter, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Winzer, P. J.

Yang, C.

Yasuoka, N.

N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008).
[CrossRef]

Yoshida, Y.

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett.25(9), 791–794 (2013).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA,” Opt. Express20(25), 27902–27907 (2012).
[CrossRef] [PubMed]

Yu, C.

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum-likelihood phase estimation in coherent M-ary phase-shift keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

Zacharopoulos, I.

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett.72(20), 2499–2501 (1998).
[CrossRef]

Zhang, L.

X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” J. Quantum Electron.41(4), 554–561 (2005).
[CrossRef]

Zhang, S.

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum-likelihood phase estimation in coherent M-ary phase-shift keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

Zhu, B.

Zilkie, A. J.

Appl. Phys. Lett. (1)

I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett.72(20), 2499–2501 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett.24(18), 1597–1599 (2012).
[CrossRef]

T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Symmetric highly efficient (~0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers,” IEEE Photon. Technol. Lett.14(8), 1139–1141 (2002).
[CrossRef]

G. Contestabile, Y. Yoshida, A. Maruta, and K. Kitayama, “Coherent wavelength conversion in a quantum dot SOA,” IEEE Photon. Technol. Lett.25(9), 791–794 (2013).
[CrossRef]

N. Yasuoka, K. Kawaguchi, H. Ebe, T. Akiyama, M. Ekawa, K. Morito, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers with polarization-independent gains in 1.5-µm wavelength bands,” IEEE Photon. Technol. Lett.20(23), 1908–1910 (2008).
[CrossRef]

M. Matsuura and N. Kishi, “High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA,” IEEE Photon. Technol. Lett.23(10), 615–617 (2011).
[CrossRef]

S. Zhang, C. Yu, P. Y. Kam, and J. Chen, “Parallel implementation of decision-aided maximum-likelihood phase estimation in coherent M-ary phase-shift keying systems,” IEEE Photon. Technol. Lett.21(19), 1471–1473 (2009).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

J. Lightwave Technol. (5)

J. Quantum Electron. (2)

A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, and P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” J. Quantum Electron.31(4), 689–699 (1995).
[CrossRef]

X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” J. Quantum Electron.41(4), 554–561 (2005).
[CrossRef]

Opt. Express (1)

Proc. IEEE (1)

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE95(9), 1757–1766 (2007).
[CrossRef]

Other (9)

M. Selmi, Y. Jaouen, and P. Ciblat, “Accurate digital frequency offset estimator for coherent PolMux QAM transmission systems,” in European Conference and Exhibition on Optical Communication, Vienna, Austria, paper P3.08 (2009).

C. Tremblay, A. Enriquez-Castillo, M. P. Belanger, and F. Gagnon, “Filterless WDM optical core networks based on coherent systems,” in Proceedings of International Conference on Transparent Optical Networks, Stockholm, Sweden, 2011, paper Tu.D1.4.
[CrossRef]

S. R. Nuccio, Z. Bakhtiari, O. F. Yilmaz, and A. E. Willner, “λ-conversion of 160-Gbit/s PDM 16-QAM using a single periodically-poled lithium niobate waveguide,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America 2011), paper OWG5.
[CrossRef]

R. Elschner, T. Richter, M. Nölle, J. Hilt, and C. Schubert, “Parametric amplification of 28-GBd NRZ-16QAM signals,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America 2011), paper OThC2.

A. H. Gnauck, E. Myslivets, M. Dinu, B. P. P. Kuo, P. Winzer, R. Jopson, N. Alic, A. Konczykowska, F. Jorge, J.-Y. Dupuy, and S. Radic, “All-optical tunable wavelength shifting of a 128-Gbit/s 64-QAM signal,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (Optical Society of America 2012), paper Th.2.F.2.
[CrossRef]

M. J. Connelly and C. L. Janer, “Modeling of semiconductor optical amplifier RIN and phase noise for optical PSK systems,” in Proceedings of Numerical Simulation of Optoelectronic Devices, Rome, Italy, 2011, pp. 95–96.

R. Elschner and K. Petermann, “Pump-induced nonlinear phase noise in wavelength converters based on four-wave mixing in SOAs,” in Proceedings of IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, Belek-Antalya, 2009), pp. 779–780.
[CrossRef]

B. Filion, A. T. Nguyen, S. Amiralizadeh, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America 2013), paper OTh1C.5.
[CrossRef]

J. G. Proakis and D. K. Manolakis, in Digital Signal Processing: Principles, Algorithms and Applications, (Prentice Hall, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Received constellations. (a) Pump power optimized to maximize CE. (b) Pump power optimized to minimize EVM.

Fig. 2
Fig. 2

Experimental setup. IQ-MZM = In-Phase/Quadrature Mach-Zehnder Modulator; VOA = Variable Optical Attenuator; EDFA = Erbium-Doped Fiber Amplifier; OF = Optical Filter; PC = Polarization Controller; SOA = Semiconductor Optical Amplifier; LO = Local Oscillator; CRx = Coherent Receiver; RTO = Real-Time Oscilloscope; DSP = Digital Signal Processing.

Fig. 3
Fig. 3

BER as a function of received power of 16-QAM with 40 dB input OSNR for converted wavelengths spanning over the C-band and constellation diagrams for B2B and λ C =1529.7 nm.

Fig. 4
Fig. 4

BER as a function of received power of 16-QAM for converted wavelengths spanning over the C-band and constellation diagrams for B2B and λ C =1529.7 with dual-pump configuration. (a) 30dB input OSNR. (b) 20dB input OSNR.

Fig. 5
Fig. 5

BER as a function of received power of 64-QAM with 36 dB input OSNR for converted wavelengths spanning over the C-band and constellation diagrams for −26 dBm received power.

Fig. 6
Fig. 6

BER as a function of received power of 64-QAM with a single pump configuration for 26 dB and 36 dB input OSNR and constellation diagrams.

Tables (2)

Tables Icon

Table 1 Conversion efficiency

Tables Icon

Table 2 Conversion efficiency and power penalty

Metrics