Abstract

Self-frequency conversion (SFC), where both laser oscillation and nonlinear frequency conversion occurs in the same laser crystal, has been used to efficiently extend the operational wavelength of lasers. Downsizing of the cavity mode volume (V) and increasing the quality factor (Q) could lead to a more efficient conversion process, mediated by enhanced n-th order nonlinearities that generally scale as (Q/V)n. Here, we demonstrate nanocavity-based SFC by utilizing photonic crystal nanocavity quantum dot lasers. The high Q and small V supported in semiconductor-based nanocavities facilitate efficient SFC to generate visible light, even with only a few photons present in the laser cavity. The combined broadband quantum dot gain and small device footprint enables the monolithic integration of 26 different-color nanolasers (spanning 493-627 nm) within a micro-scale region. These nanolasers provide a new platform for studying few-photon nonlinear optics, and for realizing full-color lasers on a single semiconductor chip.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express16(2), 1300–1320 (2008).
    [CrossRef] [PubMed]
  2. D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express19(13), 12408–12417 (2011).
    [CrossRef] [PubMed]
  3. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
    [CrossRef] [PubMed]
  4. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys.3(6), 430–435 (2007).
    [CrossRef]
  5. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
    [CrossRef] [PubMed]
  6. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
    [CrossRef]
  7. K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett.98(26), 263113 (2011).
    [CrossRef]
  8. M. McCutcheon, J. Young, G. Rieger, D. Dalacu, S. Frédérick, P. Poole, and R. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B76(24), 245104 (2007).
    [CrossRef]
  9. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express17(25), 22609–22615 (2009).
    [CrossRef] [PubMed]
  10. M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express18(25), 26613–26624 (2010).
    [CrossRef] [PubMed]
  11. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
    [CrossRef]
  12. A. Hayat and M. Orenstein, “Standing-wave nonlinear optics in an integrated semiconductor microcavity,” Opt. Lett.32(19), 2864–2866 (2007).
    [CrossRef] [PubMed]
  13. L. F. Johnson, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.40(1), 297–302 (1969).
    [CrossRef]
  14. A. Brenier, “The self-doubling and summing lasers: overview and modeling,” J. Lumin.91(3-4), 121–132 (2000).
    [CrossRef]
  15. F.-F. Ren, R. Li, C. Cheng, H.-T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B70(24), 245109 (2004).
    [CrossRef]
  16. M. Liscidini and L. Claudio Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1 Pt 2), 016613 (2006).
    [CrossRef] [PubMed]
  17. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ((2)) and χ((3)) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express15(12), 7303–7318 (2007).
    [CrossRef] [PubMed]
  18. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express15(24), 16161–16176 (2007).
    [CrossRef] [PubMed]
  19. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007).
    [CrossRef]
  20. N. Yamada, Y. Kaneko, S. Nakagawa, D. E. Mars, T. Takeuchi, and N. Mikoshiba, “Continuous-wave operation of a blue vertical-cavity surface-emitting laser based on second-harmonic generation,” Appl. Phys. Lett.68(14), 1895–1897 (1996).
    [CrossRef]
  21. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express14(13), 6308–6315 (2006).
    [CrossRef] [PubMed]
  22. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
    [CrossRef]
  23. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B14(9), 2268–2294 (1997).
    [CrossRef]
  24. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  25. M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broad-band spectral control of single photon sources using a nonlinear photonic crystal cavity,” Opt. Express17, 22689–22703 (2009).
    [CrossRef] [PubMed]
  26. W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong Coupling between Single Photons in Semiconductor Microcavities,” Phys. Rev. Lett.96(5), 057405 (2006).
    [CrossRef] [PubMed]
  27. G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27(11), 2386–2396 (1991).
    [CrossRef]
  28. P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy,” Phys. Rev. A50(5), 4318–4329 (1994).
    [CrossRef] [PubMed]
  29. V. Roppo, F. Raineri, R. Raj, I. Sagnes, J. Trull, R. Vilaseca, M. Scalora, and C. Cojocaru, “Enhanced efficiency of the second harmonic inhomogeneous component in an opaque cavity,” Opt. Lett.36(10), 1809–1811 (2011).
    [CrossRef] [PubMed]
  30. S. M. Thon, W. T. Irvine, D. Kleckner, and D. Bouwmeester, “Polychromatic Photonic Quasicrystal Cavities,” Phys. Rev. Lett.104(24), 243901 (2010).
    [CrossRef] [PubMed]
  31. R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994).
    [CrossRef]
  32. F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett.99(23), 231110 (2011).
    [CrossRef]
  33. S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B63(11), 113312 (2001).
    [CrossRef]
  34. Z. Y. Ou and H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett.18(13), 1053–1055 (1993).
    [CrossRef] [PubMed]
  35. P. Mandel and X. G. Wu, “Second-harmonic generation in a laser cavity,” J. Opt. Soc. Am. B3(7), 940–948 (1986).
    [CrossRef]
  36. R. B. Levien, M. J. Collett, and D. F. Walls, “Second-harmonic generation inside a laser cavity with slowly decaying atoms,” Phys. Rev. A47(3), 2324–2332 (1993).
    [CrossRef] [PubMed]
  37. M. J. Collett and R. B. Levien, “Two-photon-loss model of intracavity second-harmonic generation,” Phys. Rev. A43(9), 5068–5072 (1991).
    [CrossRef] [PubMed]
  38. A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A77(1), 013830 (2008).
    [CrossRef]

2012

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
[CrossRef]

2011

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express19(13), 12408–12417 (2011).
[CrossRef] [PubMed]

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett.98(26), 263113 (2011).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

V. Roppo, F. Raineri, R. Raj, I. Sagnes, J. Trull, R. Vilaseca, M. Scalora, and C. Cojocaru, “Enhanced efficiency of the second harmonic inhomogeneous component in an opaque cavity,” Opt. Lett.36(10), 1809–1811 (2011).
[CrossRef] [PubMed]

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett.99(23), 231110 (2011).
[CrossRef]

2010

2009

2008

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A77(1), 013830 (2008).
[CrossRef]

2007

M. McCutcheon, J. Young, G. Rieger, D. Dalacu, S. Frédérick, P. Poole, and R. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B76(24), 245104 (2007).
[CrossRef]

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys.3(6), 430–435 (2007).
[CrossRef]

A. Hayat and M. Orenstein, “Standing-wave nonlinear optics in an integrated semiconductor microcavity,” Opt. Lett.32(19), 2864–2866 (2007).
[CrossRef] [PubMed]

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ((2)) and χ((3)) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express15(12), 7303–7318 (2007).
[CrossRef] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express15(24), 16161–16176 (2007).
[CrossRef] [PubMed]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007).
[CrossRef]

2006

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong Coupling between Single Photons in Semiconductor Microcavities,” Phys. Rev. Lett.96(5), 057405 (2006).
[CrossRef] [PubMed]

M. Liscidini and L. Claudio Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1 Pt 2), 016613 (2006).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

2004

F.-F. Ren, R. Li, C. Cheng, H.-T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B70(24), 245109 (2004).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
[CrossRef] [PubMed]

2003

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2001

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B63(11), 113312 (2001).
[CrossRef]

2000

A. Brenier, “The self-doubling and summing lasers: overview and modeling,” J. Lumin.91(3-4), 121–132 (2000).
[CrossRef]

1997

1996

N. Yamada, Y. Kaneko, S. Nakagawa, D. E. Mars, T. Takeuchi, and N. Mikoshiba, “Continuous-wave operation of a blue vertical-cavity surface-emitting laser based on second-harmonic generation,” Appl. Phys. Lett.68(14), 1895–1897 (1996).
[CrossRef]

1994

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy,” Phys. Rev. A50(5), 4318–4329 (1994).
[CrossRef] [PubMed]

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994).
[CrossRef]

1993

Z. Y. Ou and H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett.18(13), 1053–1055 (1993).
[CrossRef] [PubMed]

R. B. Levien, M. J. Collett, and D. F. Walls, “Second-harmonic generation inside a laser cavity with slowly decaying atoms,” Phys. Rev. A47(3), 2324–2332 (1993).
[CrossRef] [PubMed]

1991

M. J. Collett and R. B. Levien, “Two-photon-loss model of intracavity second-harmonic generation,” Phys. Rev. A43(9), 5068–5072 (1991).
[CrossRef] [PubMed]

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27(11), 2386–2396 (1991).
[CrossRef]

1986

1969

L. F. Johnson, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.40(1), 297–302 (1969).
[CrossRef]

Abernathy, C. R.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994).
[CrossRef]

Aimez, V.

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Andreani, L. C.

Arakawa, Y.

Arès, R.

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Belkin, M. A.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007).
[CrossRef]

Belyanin, A.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007).
[CrossRef]

Bermel, P.

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Bjork, G.

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27(11), 2386–2396 (1991).
[CrossRef]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Boucaud, P.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B63(11), 113312 (2001).
[CrossRef]

Bouwmeester, D.

S. M. Thon, W. T. Irvine, D. Kleckner, and D. Bouwmeester, “Polychromatic Photonic Quasicrystal Cavities,” Phys. Rev. Lett.104(24), 243901 (2010).
[CrossRef] [PubMed]

W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong Coupling between Single Photons in Semiconductor Microcavities,” Phys. Rev. Lett.96(5), 057405 (2006).
[CrossRef] [PubMed]

Bravo-Abad, J.

Brenier, A.

A. Brenier, “The self-doubling and summing lasers: overview and modeling,” J. Lumin.91(3-4), 121–132 (2000).
[CrossRef]

Brunhes, T.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B63(11), 113312 (2001).
[CrossRef]

Buckley, S.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett.98(26), 263113 (2011).
[CrossRef]

Capasso, F.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007).
[CrossRef]

Carmichael, H. J.

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy,” Phys. Rev. A50(5), 4318–4329 (1994).
[CrossRef] [PubMed]

Carmon, T.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys.3(6), 430–435 (2007).
[CrossRef]

Chaker, M.

Chang, D. E.

Cheng, C.

F.-F. Ren, R. Li, C. Cheng, H.-T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B70(24), 245109 (2004).
[CrossRef]

Cho, A. Y.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007).
[CrossRef]

Christodoulides, D. N.

Claudio Andreani, L.

M. Liscidini and L. Claudio Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1 Pt 2), 016613 (2006).
[CrossRef] [PubMed]

Cojocaru, C.

Collett, M. J.

R. B. Levien, M. J. Collett, and D. F. Walls, “Second-harmonic generation inside a laser cavity with slowly decaying atoms,” Phys. Rev. A47(3), 2324–2332 (1993).
[CrossRef] [PubMed]

M. J. Collett and R. B. Levien, “Two-photon-loss model of intracavity second-harmonic generation,” Phys. Rev. A43(9), 5068–5072 (1991).
[CrossRef] [PubMed]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Crowley, M. T.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett.99(23), 231110 (2011).
[CrossRef]

Dalacu, D.

M. McCutcheon, J. Young, G. Rieger, D. Dalacu, S. Frédérick, P. Poole, and R. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B76(24), 245104 (2007).
[CrossRef]

De Angelis, C.

Delprat, S.

Duchesne, D.

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Foster, M. A.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Frédérick, S.

M. McCutcheon, J. Young, G. Rieger, D. Dalacu, S. Frédérick, P. Poole, and R. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B76(24), 245104 (2007).
[CrossRef]

Fu, T.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994).
[CrossRef]

Gaeta, A. L.

Galli, M.

Gerace, D.

Gérard, J.-M.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B63(11), 113312 (2001).
[CrossRef]

Glotin, F.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B63(11), 113312 (2001).
[CrossRef]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Grillot, F.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett.99(23), 231110 (2011).
[CrossRef]

Guizzetti, G.

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Hatami, F.

Hayat, A.

A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A77(1), 013830 (2008).
[CrossRef]

A. Hayat and M. Orenstein, “Standing-wave nonlinear optics in an integrated semiconductor microcavity,” Opt. Lett.32(19), 2864–2866 (2007).
[CrossRef] [PubMed]

Hennessy, K.

W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong Coupling between Single Photons in Semiconductor Microcavities,” Phys. Rev. Lett.96(5), 057405 (2006).
[CrossRef] [PubMed]

Hirao, K.

F.-F. Ren, R. Li, C. Cheng, H.-T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B70(24), 245109 (2004).
[CrossRef]

Irvine, W. T.

S. M. Thon, W. T. Irvine, D. Kleckner, and D. Bouwmeester, “Polychromatic Photonic Quasicrystal Cavities,” Phys. Rev. Lett.104(24), 243901 (2010).
[CrossRef] [PubMed]

W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong Coupling between Single Photons in Semiconductor Microcavities,” Phys. Rev. Lett.96(5), 057405 (2006).
[CrossRef] [PubMed]

Ishida, S.

Ito, R.

Iwamoto, S.

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, L. F.

L. F. Johnson, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.40(1), 297–302 (1969).
[CrossRef]

Johnson, S. G.

Kaneko, Y.

N. Yamada, Y. Kaneko, S. Nakagawa, D. E. Mars, T. Takeuchi, and N. Mikoshiba, “Continuous-wave operation of a blue vertical-cavity surface-emitting laser based on second-harmonic generation,” Appl. Phys. Lett.68(14), 1895–1897 (1996).
[CrossRef]

Kawaguchi, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
[CrossRef]

Kimble, H. J.

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
[CrossRef] [PubMed]

Kitamoto, A.

Kleckner, D.

S. M. Thon, W. T. Irvine, D. Kleckner, and D. Bouwmeester, “Polychromatic Photonic Quasicrystal Cavities,” Phys. Rev. Lett.104(24), 243901 (2010).
[CrossRef] [PubMed]

Kondo, T.

Krauss, T. F.

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express18(25), 26613–26624 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Kumagai, N.

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Légaré, F.

Lester, L. F.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett.99(23), 231110 (2011).
[CrossRef]

Levien, R. B.

R. B. Levien, M. J. Collett, and D. F. Walls, “Second-harmonic generation inside a laser cavity with slowly decaying atoms,” Phys. Rev. A47(3), 2324–2332 (1993).
[CrossRef] [PubMed]

M. J. Collett and R. B. Levien, “Two-photon-loss model of intracavity second-harmonic generation,” Phys. Rev. A43(9), 5068–5072 (1991).
[CrossRef] [PubMed]

Li, R.

F.-F. Ren, R. Li, C. Cheng, H.-T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B70(24), 245109 (2004).
[CrossRef]

Lin, Z.

Lipson, M.

Liscidini, M.

M. Liscidini and L. Claudio Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1 Pt 2), 016613 (2006).
[CrossRef] [PubMed]

Locatelli, A.

Loncar, M.

Lukin, M. D.

Mandel, P.

Mars, D. E.

N. Yamada, Y. Kaneko, S. Nakagawa, D. E. Mars, T. Takeuchi, and N. Mikoshiba, “Continuous-wave operation of a blue vertical-cavity surface-emitting laser based on second-harmonic generation,” Appl. Phys. Lett.68(14), 1895–1897 (1996).
[CrossRef]

Masselink, W. T.

Matsuo, S.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
[CrossRef]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

McCutcheon, M.

M. McCutcheon, J. Young, G. Rieger, D. Dalacu, S. Frédérick, P. Poole, and R. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B76(24), 245104 (2007).
[CrossRef]

McCutcheon, M. W.

Mikoshiba, N.

N. Yamada, Y. Kaneko, S. Nakagawa, D. E. Mars, T. Takeuchi, and N. Mikoshiba, “Continuous-wave operation of a blue vertical-cavity surface-emitting laser based on second-harmonic generation,” Appl. Phys. Lett.68(14), 1895–1897 (1996).
[CrossRef]

Modotto, D.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Morandotti, R.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Naderi, N. A.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett.99(23), 231110 (2011).
[CrossRef]

Nakagawa, S.

N. Yamada, Y. Kaneko, S. Nakagawa, D. E. Mars, T. Takeuchi, and N. Mikoshiba, “Continuous-wave operation of a blue vertical-cavity surface-emitting laser based on second-harmonic generation,” Appl. Phys. Lett.68(14), 1895–1897 (1996).
[CrossRef]

Nakata, Y.

Newman, N.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Nomura, M.

Notomi, M.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
[CrossRef]

Nozaki, K.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
[CrossRef]

O’Faolain, L.

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express18(25), 26613–26624 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Oakley, D. C.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007).
[CrossRef]

Orenstein, M.

A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A77(1), 013830 (2008).
[CrossRef]

A. Hayat and M. Orenstein, “Standing-wave nonlinear optics in an integrated semiconductor microcavity,” Opt. Lett.32(19), 2864–2866 (2007).
[CrossRef] [PubMed]

Ortega, J.-M.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B63(11), 113312 (2001).
[CrossRef]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Ou, Z. Y.

Pearton, S. J.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994).
[CrossRef]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Poole, P.

M. McCutcheon, J. Young, G. Rieger, D. Dalacu, S. Frédérick, P. Poole, and R. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B76(24), 245104 (2007).
[CrossRef]

Prazeres, R.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B63(11), 113312 (2001).
[CrossRef]

Qiu, J.

F.-F. Ren, R. Li, C. Cheng, H.-T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B70(24), 245109 (2004).
[CrossRef]

Raghunathan, R.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett.99(23), 231110 (2011).
[CrossRef]

Raineri, F.

Raj, R.

Ren, F.-F.

F.-F. Ren, R. Li, C. Cheng, H.-T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B70(24), 245109 (2004).
[CrossRef]

Rice, P. R.

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy,” Phys. Rev. A50(5), 4318–4329 (1994).
[CrossRef] [PubMed]

Rieger, G.

M. McCutcheon, J. Young, G. Rieger, D. Dalacu, S. Frédérick, P. Poole, and R. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B76(24), 245104 (2007).
[CrossRef]

Rivoire, K.

Rodriguez, A.

Roppo, V.

Rubin, M.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994).
[CrossRef]

Rutkowska, K. A.

Sagnes, I.

Salamo, G.

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Sato, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
[CrossRef]

Sauvage, S.

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B63(11), 113312 (2001).
[CrossRef]

Scalora, M.

Schwartz, R. N.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994).
[CrossRef]

Segawa, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
[CrossRef]

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

Shinya, A.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
[CrossRef]

Shirane, M.

Shoji, I.

Si, J.

F.-F. Ren, R. Li, C. Cheng, H.-T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B70(24), 245109 (2004).
[CrossRef]

Sivco, D. L.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007).
[CrossRef]

Soljacic, M.

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Sorel, M.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
[CrossRef] [PubMed]

Suzaki, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
[CrossRef]

Takahashi, R.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
[CrossRef]

Takeuchi, T.

N. Yamada, Y. Kaneko, S. Nakagawa, D. E. Mars, T. Takeuchi, and N. Mikoshiba, “Continuous-wave operation of a blue vertical-cavity surface-emitting laser based on second-harmonic generation,” Appl. Phys. Lett.68(14), 1895–1897 (1996).
[CrossRef]

Thon, S. M.

S. M. Thon, W. T. Irvine, D. Kleckner, and D. Bouwmeester, “Polychromatic Photonic Quasicrystal Cavities,” Phys. Rev. Lett.104(24), 243901 (2010).
[CrossRef] [PubMed]

Trull, J.

Turner, A. C.

Turner, G. W.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007).
[CrossRef]

Vahala, K. J.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys.3(6), 430–435 (2007).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
[CrossRef] [PubMed]

Vilaseca, R.

Vineis, C. J.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007).
[CrossRef]

Volatier, M.

Vuckovic, J.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett.98(26), 263113 (2011).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express17(25), 22609–22615 (2009).
[CrossRef] [PubMed]

Walls, D. F.

R. B. Levien, M. J. Collett, and D. F. Walls, “Second-harmonic generation inside a laser cavity with slowly decaying atoms,” Phys. Rev. A47(3), 2324–2332 (1993).
[CrossRef] [PubMed]

Wang, H.-T.

F.-F. Ren, R. Li, C. Cheng, H.-T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B70(24), 245109 (2004).
[CrossRef]

Watanabe, K.

Welna, K.

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

Williams, R.

M. McCutcheon, J. Young, G. Rieger, D. Dalacu, S. Frédérick, P. Poole, and R. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B76(24), 245104 (2007).
[CrossRef]

Wilson, R. G.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994).
[CrossRef]

Wright, J. B.

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett.99(23), 231110 (2011).
[CrossRef]

Wu, X. G.

Yamada, N.

N. Yamada, Y. Kaneko, S. Nakagawa, D. E. Mars, T. Takeuchi, and N. Mikoshiba, “Continuous-wave operation of a blue vertical-cavity surface-emitting laser based on second-harmonic generation,” Appl. Phys. Lett.68(14), 1895–1897 (1996).
[CrossRef]

Yamamoto, Y.

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27(11), 2386–2396 (1991).
[CrossRef]

Young, J.

M. McCutcheon, J. Young, G. Rieger, D. Dalacu, S. Frédérick, P. Poole, and R. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B76(24), 245104 (2007).
[CrossRef]

Zavada, J. M.

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994).
[CrossRef]

Zhang, Y.

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett.98(26), 263113 (2011).
[CrossRef]

N. Yamada, Y. Kaneko, S. Nakagawa, D. E. Mars, T. Takeuchi, and N. Mikoshiba, “Continuous-wave operation of a blue vertical-cavity surface-emitting laser based on second-harmonic generation,” Appl. Phys. Lett.68(14), 1895–1897 (1996).
[CrossRef]

R. G. Wilson, R. N. Schwartz, C. R. Abernathy, S. J. Pearton, N. Newman, M. Rubin, T. Fu, and J. M. Zavada, “1.54-μm photoluminescence from Er-implanted GaN and AlN,” Appl. Phys. Lett.65(8), 992–994 (1994).
[CrossRef]

F. Grillot, N. A. Naderi, J. B. Wright, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett.99(23), 231110 (2011).
[CrossRef]

IEEE J. Quantum Electron.

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron.27(11), 2386–2396 (1991).
[CrossRef]

J. Appl. Phys.

L. F. Johnson, “Coherent Emission from Rare Earth Ions in Electro-optic Crystals,” J. Appl. Phys.40(1), 297–302 (1969).
[CrossRef]

J. Lumin.

A. Brenier, “The self-doubling and summing lasers: overview and modeling,” J. Lumin.91(3-4), 121–132 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3(4), 206–210 (2009).
[CrossRef]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics1(5), 288–292 (2007).
[CrossRef]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5(5), 297–300 (2011).
[CrossRef]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics6(4), 248–252 (2012).
[CrossRef]

Nat. Phys.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys.3(6), 430–435 (2007).
[CrossRef]

Nature

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express

M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broad-band spectral control of single photon sources using a nonlinear photonic crystal cavity,” Opt. Express17, 22689–22703 (2009).
[CrossRef] [PubMed]

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chaker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express19(13), 12408–12417 (2011).
[CrossRef] [PubMed]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express17(25), 22609–22615 (2009).
[CrossRef] [PubMed]

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express18(25), 26613–26624 (2010).
[CrossRef] [PubMed]

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “χ((2)) and χ((3)) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express15(12), 7303–7318 (2007).
[CrossRef] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express15(24), 16161–16176 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy,” Phys. Rev. A50(5), 4318–4329 (1994).
[CrossRef] [PubMed]

R. B. Levien, M. J. Collett, and D. F. Walls, “Second-harmonic generation inside a laser cavity with slowly decaying atoms,” Phys. Rev. A47(3), 2324–2332 (1993).
[CrossRef] [PubMed]

M. J. Collett and R. B. Levien, “Two-photon-loss model of intracavity second-harmonic generation,” Phys. Rev. A43(9), 5068–5072 (1991).
[CrossRef] [PubMed]

A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A77(1), 013830 (2008).
[CrossRef]

Phys. Rev. B

S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J.-M. Ortega, and J.-M. Gérard, “Second-harmonic generation resonant with s-p transition in InAs/GaAs self-assembled quantum dots,” Phys. Rev. B63(11), 113312 (2001).
[CrossRef]

F.-F. Ren, R. Li, C. Cheng, H.-T. Wang, J. Qiu, J. Si, and K. Hirao, “Giant enhancement of second harmonic generation in a finite photonic crystal with a single defect and dual-localized modes,” Phys. Rev. B70(24), 245109 (2004).
[CrossRef]

M. McCutcheon, J. Young, G. Rieger, D. Dalacu, S. Frédérick, P. Poole, and R. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B76(24), 245104 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. Liscidini and L. Claudio Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1 Pt 2), 016613 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity,” Phys. Rev. Lett.93(8), 083904 (2004).
[CrossRef] [PubMed]

S. M. Thon, W. T. Irvine, D. Kleckner, and D. Bouwmeester, “Polychromatic Photonic Quasicrystal Cavities,” Phys. Rev. Lett.104(24), 243901 (2010).
[CrossRef] [PubMed]

W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong Coupling between Single Photons in Semiconductor Microcavities,” Phys. Rev. Lett.96(5), 057405 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure of PhC nanocavity QD lasers investigated. (a) Schematic of the GaAs-based cavity structure, showing the simultaneous emission of coherent VIS and NIR light: the former is generated via the intra-cavity frequency doubling. The three missing airholes in the PhC lattice serve as the defect cavity, supporting the NIR lasing. The PhC slab contains 6 layers of InAs QDs, providing broadband gain in the NIR. In the following experiments, cavities with different lattice constant a spanning 244 to 340 nm are investigated. All the cavities are monolithically fabricated into the QD wafer. The total area of the cavity occupies only 40 μm2 on average. (b) Scanning electron micrograph image of a L3 PhC nanocavity, forming an air bridge structure. The lower end of the structure is cleaved to clarify the air space under the slab, which is formed by removing an Al0.7Ga0.3As sacrificial layer by a wet etching process. (c) Electric field distribution of the fundamental cavity mode investigated. Air hole positions are overlaid in the plot. (d) PL spectrum of the QD wafer at 10 K, taken by optical pumping with a power of 12 μW. The wavelengths of 1040 and 1170 nm indicate the ground state emission peaks of the stacked QDs, grown by two different growth conditions.

Fig. 2
Fig. 2

Optical characterization of PhC nanocavity QD lasers. (a) (Top) L-L plot of the NIR lasing mode at 1174 nm. The cavity shows lasing with a threshold pumping power of 12 μW assigned by the inflection point in the curve. The lasing threshold power is indicated by a blue line in the plot. The transition region of the laser (blue shaded) lies in excitation power range from 4 μW to 40 μW. Inset shows a lasing spectrum taken with a pumping power of 590 μW. (Bottom) L-L plot for the VIS emission peak at 587 nm generated by the intra-cavity SHG. Inset shows the narrow visible emission peak taken with the same pumping for the NIR case. In the linear region of the NIR laser, which corresponds to an excitation power larger than 40 μW, the curve shows quadratic dependence, suggesting the occurrence of intra-cavity SHG. Interestingly, the VIS light is observable even near the lasing threshold, where only a few photons exist in the cavity on average. (b) Plot of the cavity linewidth as a function of the excitataion power. (c) Plot of the VIS emission intensity, IVIS, as a function of the NIR peak Intensity, INIR. The plot shows quadratic dependence regardless of the operation point of the NIR laser. Data were taken at 10 K.

Fig. 3
Fig. 3

(Left) Comparison of calculated L-L curve with the experimetal results. β values used in the calculations are denoted beside the L-L curves. The best fit to the experimental results obtained by the curve with β = 0.11. From the L-L curve for β = 0.11, the average cavity photon number at the laser threshold, N ph TH , is found to be 3.4. (Right) Measured nonlinear frequency conversion efficiencies, ηIVIS/INIR2, for different ten SFC nanolasers with the same design parameters. The values are plotted as a function of the respective measured Q factors.

Fig. 4
Fig. 4

Multi-color coherent light sources monolithically integrated within a micron scale region. (a) Arrangement of the 26 lasers. They form a line with a spacing of 15 μm, and are hence integrated in a tiny area of 10x385 μm2. From the left to right, the lattice constant a is increase from 244 to 340 nm with a constant step of 3.85 nm. Because the cavities are patterned sparsely, further dense integration is possible. (b) Normalized emission spectra from the nanolasers both at the VIS (left) and NIR (right). Each single peak corresponds to lasing spectra from a single nanocavity. The peak wavelengths show red shift as the lattice constant a increases. (c) Color near-field images of PhC nanocavities with various values of a from 244 nm to 340 nm. From the top left to bottom right, a increases with a constant step, resulting in a linear increase of the emission wavelength with an average increment of 5.4 nm. The pumping power is 1.5 mW, which is far above from the lasing thresholds, and is increased to 3.0 mW for samples with emission wavelength λ > 620 nm and < 510 nm. The bottom right box shows a 2 μm scale bar. Data were taken at 10 K.

Fig. 5
Fig. 5

(Left) Microscope image of a PhC nanocavity with a = 314 nm, illuminated by 650 nm light, and plotted with a grey scale. White lines show the edge of the PhC lattice and the location of the defect cavity formed by the three missing air holes. (Right) Color near field image of the nanocavity, overlaid with the white lines, showing the distribution of the VIS light near field within the cavity.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dN dt =P N τ sp N τ nr β τ sp (N N tr ) N ph , d N ph dt = N ph τ cav + β τ sp (N N tr ) N ph +β N τ sp
H= k Δ k a k a k +(E b + E * b)+ k g k ( a k b 2 + a k b 2 )
g k = ε 0 ( 2 ε 0 ) 3 2 ω NIR 2 ω VIS k ε NIR 2 ε VIS V NIR 2 V VIS χ lmn (2) (r) b l (r) b m (r) a n k (r)dV,
dρ dt = i [ H,ρ ]+Lρ.
Lρ= κ b 2 ( 2bρ b b bρρ b b )+ k κ a k 2 ( 2 a k ρ a k a k a k ρρ a k a k ) .
d a k dt =i Δ k a k i g k b 2 κ a k 2 a k , d a k a k dt =i g k a k b 2 a k b 2 κ a k a k a k , d b dt =i k 2 g k a k b iE κ b 2 b , d b b dt =i k 2 g k a k b 2 a k b 2 +i E b + E * b κ b b b .
η= k P VIS k ( P NIR ) 2 = 2 ω NIR k g k 2 κ b 2 κ a k ( κ a k 2 ) 2 + Δ k 2 .
| β | 3 + κ b κ a 8 g 2 | β | κ a 4 g 2 | E |=0, κ a 2 4 | α | 2 g 2 | β | 4 =0.

Metrics