Abstract

The freeform optical system for an extended source was constructed by partially overlapping a few numbers of point-source freeform surfaces (PFSs) and extracting their contour. Each PFS redistributed the Lambertian emission of a point source into the prescribed light distribution or more frequently into a modified distribution. By adjusting the relative positions of the PFSs and the pattern of the modified light distribution, the optimized freeform surface could be obtained. As an example, an optical system with a height only four times the source radius is designed for achieving a uniform-illuminance distribution on the target. The optimized freeform surface was formed by two PFSs. The virtue-point-sources of the PFSs were located symmetrically on the extended source with a distance of a quarter of the source diameter from each other. Each PFS achieved an increasing-illuminance distribution. The illumination uniformity of this model can be improved by 55.4%, while the optical efficiency within the target area is maintained above 80%.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kari, J. Gadegaard, T. Søndergaard, T. G. Pedersen, and K. Pedersen, “Reliability of point source approximations in compact LED lens designs,” Opt. Express19(S6Suppl 6), A1190–A1195 (2011).
    [CrossRef] [PubMed]
  2. W. A. Parkyn, “Design of illumination lenses via extrinsic differential geometry,” Proc. SPIE3428, 154–162 (1998).
    [CrossRef]
  3. H. Ries and J. A. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A19(3), 590–595 (2002).
    [CrossRef] [PubMed]
  4. J. Bortz and N. Shatz, “Generalized functional method of nonimaging optical design,” Proc. SPIE6338, 633805, 633805-16 (2006).
    [CrossRef]
  5. C. Canavesi, W. J. Cassarly, and J. P. Rolland, “Observations on the linear programming formulation of the single reflector design problem,” Opt. Express20(4), 4050–4055 (2012).
    [CrossRef] [PubMed]
  6. L. Wang, K. Y. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt.46(18), 3716–3723 (2007).
    [CrossRef] [PubMed]
  7. Y. Luo, Z. X. Feng, Y. J. Han, and H. T. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express18(9), 9055–9063 (2010).
    [CrossRef] [PubMed]
  8. P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).
    [CrossRef]
  9. O. Dross, R. Mohedano, P. Beníteza, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS Design Methods and Real World Applications,” Proc. SPIE5529, 35–47 (2004).
    [CrossRef]
  10. F. Muñoz, P. Beníteza, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
    [CrossRef]
  11. P. A. Davies, “Edge-ray principle of nonimaging optics,” J. Opt. Soc. Am. A11(4), 1256–1259 (1994).
    [CrossRef]
  12. W. J. Cassarly, “Iterative Reflector Design Using a Cumulative Flux Compensation Approach,” Proc. SPIE 7652, 76522L 1–9 (2010).
  13. W. C. Situ, Y. J. Han, H. T. Li, and Y. Luo, “Combined feedback method for designing a free-form optical system with complicated illumination patterns for an extended LED source,” Opt. Express19(S5Suppl 5), A1022–A1030 (2011).
    [CrossRef] [PubMed]
  14. K. Wang, F. Chen, Z. Y. Liu, X. B. Luo, and S. Liu, “Design of compact freeform lens for application specific Light-Emitting Diode packaging,” Opt. Express18(2), 413–425 (2010).
    [CrossRef] [PubMed]
  15. V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed irradiance properties,” Proc. SPIE5942, 594207 (2005).
    [CrossRef]
  16. V. Oliker, “Designing Freeform Lenses for Intensity and Phase Control of Coherent Light with Help from Geometry and Mass Transport,” Arch. Ration. Mech. Anal.201(3), 1013–1045 (2011).
    [CrossRef]

2012 (1)

2011 (3)

2010 (3)

2007 (1)

2006 (1)

J. Bortz and N. Shatz, “Generalized functional method of nonimaging optical design,” Proc. SPIE6338, 633805, 633805-16 (2006).
[CrossRef]

2005 (1)

V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed irradiance properties,” Proc. SPIE5942, 594207 (2005).
[CrossRef]

2004 (3)

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).
[CrossRef]

O. Dross, R. Mohedano, P. Beníteza, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS Design Methods and Real World Applications,” Proc. SPIE5529, 35–47 (2004).
[CrossRef]

F. Muñoz, P. Beníteza, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

2002 (1)

1998 (1)

W. A. Parkyn, “Design of illumination lenses via extrinsic differential geometry,” Proc. SPIE3428, 154–162 (1998).
[CrossRef]

1994 (1)

Benítez, P.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).
[CrossRef]

Beníteza, P.

F. Muñoz, P. Beníteza, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

O. Dross, R. Mohedano, P. Beníteza, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS Design Methods and Real World Applications,” Proc. SPIE5529, 35–47 (2004).
[CrossRef]

Blen, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).
[CrossRef]

O. Dross, R. Mohedano, P. Beníteza, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS Design Methods and Real World Applications,” Proc. SPIE5529, 35–47 (2004).
[CrossRef]

Bortz, J.

J. Bortz and N. Shatz, “Generalized functional method of nonimaging optical design,” Proc. SPIE6338, 633805, 633805-16 (2006).
[CrossRef]

Canavesi, C.

Cassarly, W. J.

C. Canavesi, W. J. Cassarly, and J. P. Rolland, “Observations on the linear programming formulation of the single reflector design problem,” Opt. Express20(4), 4050–4055 (2012).
[CrossRef] [PubMed]

W. J. Cassarly, “Iterative Reflector Design Using a Cumulative Flux Compensation Approach,” Proc. SPIE 7652, 76522L 1–9 (2010).

Chaves, J.

O. Dross, R. Mohedano, P. Beníteza, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS Design Methods and Real World Applications,” Proc. SPIE5529, 35–47 (2004).
[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).
[CrossRef]

Chen, F.

Davies, P. A.

Dross, O.

F. Muñoz, P. Beníteza, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).
[CrossRef]

O. Dross, R. Mohedano, P. Beníteza, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS Design Methods and Real World Applications,” Proc. SPIE5529, 35–47 (2004).
[CrossRef]

Falicoff, W.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).
[CrossRef]

Feng, Z. X.

Gadegaard, J.

Han, Y. J.

Hernández, M.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).
[CrossRef]

O. Dross, R. Mohedano, P. Beníteza, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS Design Methods and Real World Applications,” Proc. SPIE5529, 35–47 (2004).
[CrossRef]

Kari, T.

Li, H. T.

Liu, S.

Liu, Z. Y.

Luo, X. B.

Luo, Y.

Miñano, J. C.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).
[CrossRef]

F. Muñoz, P. Beníteza, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

O. Dross, R. Mohedano, P. Beníteza, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS Design Methods and Real World Applications,” Proc. SPIE5529, 35–47 (2004).
[CrossRef]

Mohedano, R.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).
[CrossRef]

O. Dross, R. Mohedano, P. Beníteza, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS Design Methods and Real World Applications,” Proc. SPIE5529, 35–47 (2004).
[CrossRef]

Muñoz, F.

O. Dross, R. Mohedano, P. Beníteza, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS Design Methods and Real World Applications,” Proc. SPIE5529, 35–47 (2004).
[CrossRef]

F. Muñoz, P. Beníteza, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

Muschaweck, J. A.

Oliker, V.

V. Oliker, “Designing Freeform Lenses for Intensity and Phase Control of Coherent Light with Help from Geometry and Mass Transport,” Arch. Ration. Mech. Anal.201(3), 1013–1045 (2011).
[CrossRef]

V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed irradiance properties,” Proc. SPIE5942, 594207 (2005).
[CrossRef]

Parkyn, B.

F. Muñoz, P. Beníteza, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

Parkyn, W. A.

W. A. Parkyn, “Design of illumination lenses via extrinsic differential geometry,” Proc. SPIE3428, 154–162 (1998).
[CrossRef]

Pedersen, K.

Pedersen, T. G.

Qian, K. Y.

Ries, H.

Rolland, J. P.

Shatz, N.

J. Bortz and N. Shatz, “Generalized functional method of nonimaging optical design,” Proc. SPIE6338, 633805, 633805-16 (2006).
[CrossRef]

Situ, W. C.

Søndergaard, T.

Wang, K.

Wang, L.

Appl. Opt. (1)

Arch. Ration. Mech. Anal. (1)

V. Oliker, “Designing Freeform Lenses for Intensity and Phase Control of Coherent Light with Help from Geometry and Mass Transport,” Arch. Ration. Mech. Anal.201(3), 1013–1045 (2011).
[CrossRef]

Iterative Reflector Design Using a Cumulative Flux Compensation Approach (1)

W. J. Cassarly, “Iterative Reflector Design Using a Cumulative Flux Compensation Approach,” Proc. SPIE 7652, 76522L 1–9 (2010).

J. Opt. Soc. Am. A (2)

Opt. Eng. (2)

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng.43(7), 1489–1502 (2004).
[CrossRef]

F. Muñoz, P. Beníteza, O. Dross, J. C. Miñano, and B. Parkyn, “Simultaneous multiple surface design of compact air-gap collimators for light-emitting diodes,” Opt. Eng.43(7), 1522–1530 (2004).
[CrossRef]

Opt. Express (5)

Proc. SPIE (4)

W. A. Parkyn, “Design of illumination lenses via extrinsic differential geometry,” Proc. SPIE3428, 154–162 (1998).
[CrossRef]

J. Bortz and N. Shatz, “Generalized functional method of nonimaging optical design,” Proc. SPIE6338, 633805, 633805-16 (2006).
[CrossRef]

O. Dross, R. Mohedano, P. Beníteza, J. C. Miñano, J. Chaves, J. Blen, M. Hernández, and F. Muñoz, “Review of SMS Design Methods and Real World Applications,” Proc. SPIE5529, 35–47 (2004).
[CrossRef]

V. Oliker, “Geometric and variational methods in optical design of reflecting surfaces with prescribed irradiance properties,” Proc. SPIE5942, 594207 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Refractive optical freeform surfaces, (a) two, three and five PFSs are used for overlapping, respectively. The corresponding extended-source freeform surfaces are obtained (b) by extracting external contour, or (c) by extracting internal contour.

Fig. 2
Fig. 2

(a) The light distribution A is achieved from a virtual point source through PFS, (b) the light distribution B is obtained from an extended source via the new freeform surface (EFS).

Fig. 3
Fig. 3

The flow chart of ideal point source freeform surfaces overlapping method

Fig. 4
Fig. 4

The dimensional parameters and refractive index of the optical system.

Fig. 5
Fig. 5

Under the external contour situation, the efficiency and RSD values of the optical systems with two, three and five PFS C1s respectively. The outmost point source positions are (a) 5mm off the source center, (b) 2.5mm off the source center.

Fig. 6
Fig. 6

The comparisons between extracting external contour and extracting internal contour, with different point-source positions. (a)The efficiency of the optical systems, (b) the RSD values of the optical systems.

Fig. 7
Fig. 7

The axial cross-sectional view of some light distribution pretreatments.

Fig. 8
Fig. 8

S equals 1.25mm. The linearly decreasing (LD) illuminance distribution and the cosine decreasing (CD) illuminance distribution pretreatments are used respectively. (a)The efficiency of the optical systems with different t value, (b) the RSD values of the optical system with different t value.

Fig. 9
Fig. 9

The efficiency and the RSD values of the optical system using the linear increasing distribution pretreatment with different t value.

Fig. 10
Fig. 10

The efficiency and the RSD values of the optical system using the hollow distribution pretreatment with different t value.

Fig. 11
Fig. 11

On the target plane, the illuminance distributions of (a) model Reference1, (b) model OPT1, (c) model OPT3, (d) model OPT4 and (e) model OPT5.

Fig. 12
Fig. 12

(a) the freeform surface contour lines of model Reference1, OPT1, OPT3, OPT4 and OPT5, (b) the corresponding lenses (all the heights of the lenses are 20mm) of model Reference1, OPT1, OPT3, OPT4 and OPT5.

Tables (3)

Tables Icon

Table 1 The efficiency and RSD values of the optical systems with different S when the external contour is extracted

Tables Icon

Table 2 The results and parameters of the optimized models when S = 1.25mm

Tables Icon

Table 3 The results and parameters of the optimized models S = 1.25mm, 1.875mm, 2.5mm and 3.125mm respectively

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Ω I( i )dΩ = D E( r )ds .
f: i r .
Efficiency= Energyonthetarget area Energyemittedfromthesource .
RSD= 1 N1 i=1 N ( E i E ¯ 1 ) 2 .
E (r) uniform =const,rR.
E (r) linear = E 0 (1 1t R r),rR.
E (r) cosinedecreasing = E 0 cos( r R a),a=arccos(t),rR.
{ E (r) linearhollow = E 0 (1 2(1h) R r),0r R 2 E (r) linearhollow = E 0 ( 2(1h) R r+2h1), R 2 <rR .
E(r)=0,ifr>R.

Metrics