Abstract

A diode-end-pumped simultaneously Q-switched and mode-locked self-Raman YVO4/Nd:YVO4/YVO4 laser at first-Stokes wavelength of 1175.9 nm was demonstrated. The shortest mode-locked pulse width of the laser was obtained to be ~23.57 ps, with the corresponding time-bandwidth product of ~0.51. The maximum average output power, the highest pulse energy and the highest peak power were obtained to be 1.83 W, 6.1 μJ and 220 kW, respectively. The nonlinear Raman process improved the Q-switched mode-locking performance of the Stokes pulses.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Chen, T. M. Huang, C. C. Liao, Y. P. Lan, and S. C. Wang, “Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser,” IEEE Photon. Technol. Lett.11(10), 1241–1243 (1999).
    [CrossRef]
  2. H. Ogilvy, M. J. Withford, P. Dekker, and J. A. Piper, “Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm,” Opt. Express11(19), 2411–2415 (2003).
    [CrossRef] [PubMed]
  3. T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and L. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4,” Appl. Phys. B58(5), 373–379 (1994).
    [CrossRef]
  4. C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, and M. Jiang, “A 13.3-W Laser-diode-array End-pumped Nd:GdVO4 Continuous-wave Laser at 1.34 μm,” Appl. Phys. B80(1), 45–48 (2005).
    [CrossRef]
  5. C. Du, S. Ruan, Y. Yu, and F. Zeng, “6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm,” Opt. Express13(6), 2013–2018 (2005).
    [CrossRef] [PubMed]
  6. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
    [CrossRef]
  7. H. C. Liang, R. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express16(25), 21149–21154 (2008).
    [CrossRef] [PubMed]
  8. H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett.35(1), 4–6 (2010).
    [CrossRef] [PubMed]
  9. H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B97(2), 451–455 (2009).
    [CrossRef]
  10. Y. F. Chen, “Efficient 1521-nm Nd:GdVO4 Raman laser,” Opt. Lett.29(22), 2632–2634 (2004).
    [CrossRef] [PubMed]
  11. Y. F. Chen, “Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser,” Opt. Lett.29(11), 1251–1253 (2004).
    [CrossRef] [PubMed]
  12. C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1-W diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176 nm,” Appl. Phys. B101(4), 743–746 (2010).
    [CrossRef]
  13. W. Chen, Y. Wei, C. Huang, X. Wang, H. Shen, S. Zhai, S. Xu, B. Li, Z. Chen, and G. Zhang, “Second-Stokes YVO4/Nd:YVO4/YVO4 self-frequency Raman laser,” Opt. Lett.37(11), 1968–1970 (2012).
    [CrossRef] [PubMed]
  14. D. J. Spence and R. P. Mildren, “Mode locking using stimulated Raman scattering,” Opt. Express15(13), 8170–8175 (2007).
    [CrossRef] [PubMed]
  15. D. J. Spence, Y. Zhao, S. D. Jackson, and R. P. Mildren, “An investigation into Raman mode locking of fiber lasers,” Opt. Express16(8), 5277–5289 (2008).
    [CrossRef] [PubMed]
  16. V. A. Lisinetskii, D. N. Busko, R. V. Chulkov, A. S. Grabtchikov, P. A. Apanasevich, and V. A. Orlovich, “Self-mode locking at multiple Stokes generation in the Raman laser,” Opt. Commun.283(7), 1454–1458 (2010).
    [CrossRef]
  17. M. Weitz, C. Theobald, R. Wallenstein, and J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett.92(9), 091122 (2008).
    [CrossRef]
  18. J. Peng, Y. Zheng, K. Zheng, and X. Chang, “Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser,” Opt. Commun.285(24), 5334–5336 (2012).
    [CrossRef]
  19. H. Shen, Q. Wang, X. Zhang, X. Chen, Z. Cong, Z. Wu, F. Bai, W. Lan, and L. Gao, “1st-Stokes and 2nd-Stokes dual-wavelength operation and mode-locking modulation in diode-side-pumped Nd:YAG/BaWO4 Raman laser,” Opt. Express20(16), 17823–17832 (2012).
    [CrossRef] [PubMed]
  20. P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO4 oscillator by an active Q-switch,” Opt. Express12(17), 4041–4046 (2004).
    [CrossRef] [PubMed]
  21. J. H. Lin, H. R. Chen, H. H. Hsu, M. D. Wei, K. H. Lin, and W. F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express16(21), 16538–16545 (2008).
    [PubMed]
  22. Y. M. Chang, J. Lee, and J. H. Lee, “A Q-switched, mode-locked fiber laser employing subharmonic cavity modulation,” Opt. Express19(27), 26627–26633 (2011).
    [CrossRef] [PubMed]

2012 (3)

2011 (1)

2010 (3)

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1-W diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176 nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

V. A. Lisinetskii, D. N. Busko, R. V. Chulkov, A. S. Grabtchikov, P. A. Apanasevich, and V. A. Orlovich, “Self-mode locking at multiple Stokes generation in the Raman laser,” Opt. Commun.283(7), 1454–1458 (2010).
[CrossRef]

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett.35(1), 4–6 (2010).
[CrossRef] [PubMed]

2009 (1)

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B97(2), 451–455 (2009).
[CrossRef]

2008 (4)

2007 (1)

2005 (2)

C. Du, S. Ruan, Y. Yu, and F. Zeng, “6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm,” Opt. Express13(6), 2013–2018 (2005).
[CrossRef] [PubMed]

C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, and M. Jiang, “A 13.3-W Laser-diode-array End-pumped Nd:GdVO4 Continuous-wave Laser at 1.34 μm,” Appl. Phys. B80(1), 45–48 (2005).
[CrossRef]

2004 (3)

2003 (1)

2001 (1)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

1999 (1)

Y. F. Chen, T. M. Huang, C. C. Liao, Y. P. Lan, and S. C. Wang, “Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser,” IEEE Photon. Technol. Lett.11(10), 1241–1243 (1999).
[CrossRef]

1994 (1)

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and L. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4,” Appl. Phys. B58(5), 373–379 (1994).
[CrossRef]

Agnesi, A.

Apanasevich, P. A.

V. A. Lisinetskii, D. N. Busko, R. V. Chulkov, A. S. Grabtchikov, P. A. Apanasevich, and V. A. Orlovich, “Self-mode locking at multiple Stokes generation in the Raman laser,” Opt. Commun.283(7), 1454–1458 (2010).
[CrossRef]

Bagaev, S. N.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Bai, F.

Barnes, J. C.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Busko, D. N.

V. A. Lisinetskii, D. N. Busko, R. V. Chulkov, A. S. Grabtchikov, P. A. Apanasevich, and V. A. Orlovich, “Self-mode locking at multiple Stokes generation in the Raman laser,” Opt. Commun.283(7), 1454–1458 (2010).
[CrossRef]

Chang, H. L.

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B97(2), 451–455 (2009).
[CrossRef]

Chang, X.

J. Peng, Y. Zheng, K. Zheng, and X. Chang, “Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser,” Opt. Commun.285(24), 5334–5336 (2012).
[CrossRef]

Chang, Y. M.

Chen, H. R.

Chen, R. C.

Chen, W.

Chen, X.

Chen, Y. F.

Chen, Y. T.

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B97(2), 451–455 (2009).
[CrossRef]

Chen, Z.

Chulkov, R. V.

V. A. Lisinetskii, D. N. Busko, R. V. Chulkov, A. S. Grabtchikov, P. A. Apanasevich, and V. A. Orlovich, “Self-mode locking at multiple Stokes generation in the Raman laser,” Opt. Commun.283(7), 1454–1458 (2010).
[CrossRef]

Chyba, T. H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Cong, Z.

Das, S.

Datta, P.

Degiorgio, V.

Dekker, P.

Du, C.

C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, and M. Jiang, “A 13.3-W Laser-diode-array End-pumped Nd:GdVO4 Continuous-wave Laser at 1.34 μm,” Appl. Phys. B80(1), 45–48 (2005).
[CrossRef]

C. Du, S. Ruan, Y. Yu, and F. Zeng, “6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm,” Opt. Express13(6), 2013–2018 (2005).
[CrossRef] [PubMed]

Du, C. L.

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1-W diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176 nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Gad, G. M. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Gao, L.

Grabtchikov, A. S.

V. A. Lisinetskii, D. N. Busko, R. V. Chulkov, A. S. Grabtchikov, P. A. Apanasevich, and V. A. Orlovich, “Self-mode locking at multiple Stokes generation in the Raman laser,” Opt. Commun.283(7), 1454–1458 (2010).
[CrossRef]

Guo, Y. Y.

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1-W diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176 nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Hsieh, W. F.

Hsu, H. H.

Huang, C.

Huang, T. M.

Y. F. Chen, T. M. Huang, C. C. Liao, Y. P. Lan, and S. C. Wang, “Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser,” IEEE Photon. Technol. Lett.11(10), 1241–1243 (1999).
[CrossRef]

Huang, W. C.

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett.35(1), 4–6 (2010).
[CrossRef] [PubMed]

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B97(2), 451–455 (2009).
[CrossRef]

Huang, Y. J.

Huber, G.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and L. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4,” Appl. Phys. B58(5), 373–379 (1994).
[CrossRef]

Jackson, S. D.

Jensen, T.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and L. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4,” Appl. Phys. B58(5), 373–379 (1994).
[CrossRef]

Jiang, M.

C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, and M. Jiang, “A 13.3-W Laser-diode-array End-pumped Nd:GdVO4 Continuous-wave Laser at 1.34 μm,” Appl. Phys. B80(1), 45–48 (2005).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Kouta, H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Kuwano, Y.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

L’huillier, J. A.

M. Weitz, C. Theobald, R. Wallenstein, and J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett.92(9), 091122 (2008).
[CrossRef]

Lan, W.

Lan, Y. P.

Y. F. Chen, T. M. Huang, C. C. Liao, Y. P. Lan, and S. C. Wang, “Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser,” IEEE Photon. Technol. Lett.11(10), 1241–1243 (1999).
[CrossRef]

Lee, J.

Lee, J. H.

Li, B.

Liang, H. C.

Liao, C. C.

Y. F. Chen, T. M. Huang, C. C. Liao, Y. P. Lan, and S. C. Wang, “Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser,” IEEE Photon. Technol. Lett.11(10), 1241–1243 (1999).
[CrossRef]

Lin, J. H.

Lin, K. H.

Lisinetskii, V. A.

V. A. Lisinetskii, D. N. Busko, R. V. Chulkov, A. S. Grabtchikov, P. A. Apanasevich, and V. A. Orlovich, “Self-mode locking at multiple Stokes generation in the Raman laser,” Opt. Commun.283(7), 1454–1458 (2010).
[CrossRef]

Lu, J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Meyn, J. P.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and L. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4,” Appl. Phys. B58(5), 373–379 (1994).
[CrossRef]

Mildren, R. P.

Mukhopadhyay, S.

Murai, T.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Ogilvy, H.

Orlovich, V. A.

V. A. Lisinetskii, D. N. Busko, R. V. Chulkov, A. S. Grabtchikov, P. A. Apanasevich, and V. A. Orlovich, “Self-mode locking at multiple Stokes generation in the Raman laser,” Opt. Commun.283(7), 1454–1458 (2010).
[CrossRef]

Ostroumov, V. G.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and L. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4,” Appl. Phys. B58(5), 373–379 (1994).
[CrossRef]

Peng, J.

J. Peng, Y. Zheng, K. Zheng, and X. Chang, “Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser,” Opt. Commun.285(24), 5334–5336 (2012).
[CrossRef]

Piper, J. A.

Ruan, S.

C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, and M. Jiang, “A 13.3-W Laser-diode-array End-pumped Nd:GdVO4 Continuous-wave Laser at 1.34 μm,” Appl. Phys. B80(1), 45–48 (2005).
[CrossRef]

C. Du, S. Ruan, Y. Yu, and F. Zeng, “6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm,” Opt. Express13(6), 2013–2018 (2005).
[CrossRef] [PubMed]

Ruan, S. C.

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1-W diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176 nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Shcherbakov, L. A.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and L. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4,” Appl. Phys. B58(5), 373–379 (1994).
[CrossRef]

Shen, H.

Spence, D. J.

Su, K. W.

Tartara, L.

Theobald, C.

M. Weitz, C. Theobald, R. Wallenstein, and J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett.92(9), 091122 (2008).
[CrossRef]

Ueda, K.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Wallenstein, R.

M. Weitz, C. Theobald, R. Wallenstein, and J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett.92(9), 091122 (2008).
[CrossRef]

Wang, J.

C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, and M. Jiang, “A 13.3-W Laser-diode-array End-pumped Nd:GdVO4 Continuous-wave Laser at 1.34 μm,” Appl. Phys. B80(1), 45–48 (2005).
[CrossRef]

Wang, Q.

Wang, S. C.

Y. F. Chen, T. M. Huang, C. C. Liao, Y. P. Lan, and S. C. Wang, “Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser,” IEEE Photon. Technol. Lett.11(10), 1241–1243 (1999).
[CrossRef]

Wang, X.

Wei, M. D.

Wei, Y.

Weitz, M.

M. Weitz, C. Theobald, R. Wallenstein, and J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett.92(9), 091122 (2008).
[CrossRef]

Withford, M. J.

Wu, Z.

Xu, S.

Yu, Y.

C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, and M. Jiang, “A 13.3-W Laser-diode-array End-pumped Nd:GdVO4 Continuous-wave Laser at 1.34 μm,” Appl. Phys. B80(1), 45–48 (2005).
[CrossRef]

C. Du, S. Ruan, Y. Yu, and F. Zeng, “6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm,” Opt. Express13(6), 2013–2018 (2005).
[CrossRef] [PubMed]

Yu, Y. Q.

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1-W diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176 nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Zagumennyi, A. I.

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and L. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4,” Appl. Phys. B58(5), 373–379 (1994).
[CrossRef]

Zeng, F.

C. Du, S. Ruan, Y. Yu, and F. Zeng, “6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm,” Opt. Express13(6), 2013–2018 (2005).
[CrossRef] [PubMed]

C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, and M. Jiang, “A 13.3-W Laser-diode-array End-pumped Nd:GdVO4 Continuous-wave Laser at 1.34 μm,” Appl. Phys. B80(1), 45–48 (2005).
[CrossRef]

Zhai, S.

Zhang, G.

Zhang, H.

C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, and M. Jiang, “A 13.3-W Laser-diode-array End-pumped Nd:GdVO4 Continuous-wave Laser at 1.34 μm,” Appl. Phys. B80(1), 45–48 (2005).
[CrossRef]

Zhang, L.

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1-W diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176 nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Zhang, X.

Zhao, Y.

Zheng, K.

J. Peng, Y. Zheng, K. Zheng, and X. Chang, “Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser,” Opt. Commun.285(24), 5334–5336 (2012).
[CrossRef]

Zheng, Y.

J. Peng, Y. Zheng, K. Zheng, and X. Chang, “Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser,” Opt. Commun.285(24), 5334–5336 (2012).
[CrossRef]

Appl. Phys. B (4)

T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and L. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4,” Appl. Phys. B58(5), 373–379 (1994).
[CrossRef]

C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, and M. Jiang, “A 13.3-W Laser-diode-array End-pumped Nd:GdVO4 Continuous-wave Laser at 1.34 μm,” Appl. Phys. B80(1), 45–48 (2005).
[CrossRef]

H. C. Liang, H. L. Chang, W. C. Huang, K. W. Su, Y. F. Chen, and Y. T. Chen, “Self-mode-locked Nd:GdVO4 laser with multi-GHz oscillations: manifestation of third-order nonlinearity,” Appl. Phys. B97(2), 451–455 (2009).
[CrossRef]

C. L. Du, L. Zhang, Y. Q. Yu, S. C. Ruan, and Y. Y. Guo, “3.1-W diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176 nm,” Appl. Phys. B101(4), 743–746 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

M. Weitz, C. Theobald, R. Wallenstein, and J. A. L’huillier, “Passively mode-locked picosecond Nd:YVO4 self-Raman laser,” Appl. Phys. Lett.92(9), 091122 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. F. Chen, T. M. Huang, C. C. Liao, Y. P. Lan, and S. C. Wang, “Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser,” IEEE Photon. Technol. Lett.11(10), 1241–1243 (1999).
[CrossRef]

Opt. Commun. (3)

J. Peng, Y. Zheng, K. Zheng, and X. Chang, “Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser,” Opt. Commun.285(24), 5334–5336 (2012).
[CrossRef]

V. A. Lisinetskii, D. N. Busko, R. V. Chulkov, A. S. Grabtchikov, P. A. Apanasevich, and V. A. Orlovich, “Self-mode locking at multiple Stokes generation in the Raman laser,” Opt. Commun.283(7), 1454–1458 (2010).
[CrossRef]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001).
[CrossRef]

Opt. Express (9)

H. Ogilvy, M. J. Withford, P. Dekker, and J. A. Piper, “Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm,” Opt. Express11(19), 2411–2415 (2003).
[CrossRef] [PubMed]

C. Du, S. Ruan, Y. Yu, and F. Zeng, “6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm,” Opt. Express13(6), 2013–2018 (2005).
[CrossRef] [PubMed]

D. J. Spence and R. P. Mildren, “Mode locking using stimulated Raman scattering,” Opt. Express15(13), 8170–8175 (2007).
[CrossRef] [PubMed]

D. J. Spence, Y. Zhao, S. D. Jackson, and R. P. Mildren, “An investigation into Raman mode locking of fiber lasers,” Opt. Express16(8), 5277–5289 (2008).
[CrossRef] [PubMed]

J. H. Lin, H. R. Chen, H. H. Hsu, M. D. Wei, K. H. Lin, and W. F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express16(21), 16538–16545 (2008).
[PubMed]

H. C. Liang, R. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express16(25), 21149–21154 (2008).
[CrossRef] [PubMed]

P. Datta, S. Mukhopadhyay, S. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO4 oscillator by an active Q-switch,” Opt. Express12(17), 4041–4046 (2004).
[CrossRef] [PubMed]

Y. M. Chang, J. Lee, and J. H. Lee, “A Q-switched, mode-locked fiber laser employing subharmonic cavity modulation,” Opt. Express19(27), 26627–26633 (2011).
[CrossRef] [PubMed]

H. Shen, Q. Wang, X. Zhang, X. Chen, Z. Cong, Z. Wu, F. Bai, W. Lan, and L. Gao, “1st-Stokes and 2nd-Stokes dual-wavelength operation and mode-locking modulation in diode-side-pumped Nd:YAG/BaWO4 Raman laser,” Opt. Express20(16), 17823–17832 (2012).
[CrossRef] [PubMed]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the QML first-Stokes self-Raman laser experimental setup.

Fig. 2
Fig. 2

Optical spectrum of QML self-Raman laser at the incident pump power of 30 W and PRF of 30 kHz.

Fig. 3
Fig. 3

(a) Average output power and (b) Q-switched envelope duration versus incident pump power at different PRFs in mode-locking operation.

Fig. 4
Fig. 4

The temporal pulse profile of the QML laser at the incident pump power of 30 W and PRF of 30 kHz.

Fig. 5
Fig. 5

Output beam profile of the laser at the incident pump power of 30 W and PRF of 30 kHz: (a) 2D display of transverse section; (b) 3D display of laser intensity of transverse section.

Fig. 6
Fig. 6

(a) Autocorrelation trace of the output pulses at the incident pump power of 30 W and a PRF of 40 kHz; (b) the corresponding output spectrum.

Fig. 7
Fig. 7

The temporal pulse profiles of (a) the fundamental emission at 1064.4 nm and (b) the first-Stokes emission at 1175.9 nm at the incident pump power of 20 W and PRF of 15 kHz.

Fig. 8
Fig. 8

(1)(2)(3)(4)(5): (a) Temporal profiles of the output pulses, and (b) the corresponding output spectra of the laser at different output powers.

Metrics