Abstract

A hybrid silicon tunable Vernier ring laser is designed and fabricated by integration of two intra-cavity ring resonators, hybrid III-V-on-silicon gain elements, and resistive heaters for thermal tuning. Thermal tuning of more than 40 nm is demonstrated with side mode suppression ratio greater than 35 dB and linewidth of 338 kHz.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  2. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
    [CrossRef]
  3. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett.37(20), 4257–4259 (2012).
    [CrossRef] [PubMed]
  4. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid silicon free-space source with integrated beam steering,” SPIE Photonics West 862911, (2013).
  5. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III-V silicon photonic steerable laser,” Photonics Conference (IPC), 2012 IEEE, 1(2), 23–27 (2012).
    [CrossRef]
  6. B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
    [CrossRef]
  7. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express21(3), 3784–3792 (2013).
    [CrossRef] [PubMed]
  8. A. Le Liepvre, C. Jany, A. Accard, M. Lamponi, F. Poingt, D. Make, F. Lelarge, J.-M. Fedeli, and S. Messaoudene, D. Bordel, and G.-H. Duan, “Widely wavelength tunable hybrid III–V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique,” Group IV Photonics (GFP), 2012 IEEE 9th International Conference on 54(56), 29–31 (2012).
  9. A. Le Liepvre, C. Jany, A. Accard, M. Lamponi, F. Poingt, D. Make, F. Lelarge, J.-M. Fedeli, and S. Messaoudene, D. Bordel, and G.-H. Duan, “Widely wavelength tunable hybrid III-V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique,” Group IV Photonics (GFP), 2012 IEEE 9th Conference on 54(56), 29–31 (2012).
  10. M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Characterization of a Hybrid Silicon-InP Laser Tapered Mode Converter” presented in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), poster JTu4A.25–1.
  11. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
    [CrossRef]

2013 (2)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
[CrossRef]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express21(3), 3784–3792 (2013).
[CrossRef] [PubMed]

2012 (1)

2010 (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

2006 (1)

2002 (1)

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
[CrossRef]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
[CrossRef]

Bordel, D.

Bovington, J. T.

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
[CrossRef]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett.37(20), 4257–4259 (2012).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
[CrossRef]

Cohen, O.

Coldren, L. A.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
[CrossRef]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett.37(20), 4257–4259 (2012).
[CrossRef] [PubMed]

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
[CrossRef]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett.37(20), 4257–4259 (2012).
[CrossRef] [PubMed]

Duan, G.-H.

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Fang, A. W.

Fedeli, J.-M.

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
[CrossRef]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett.37(20), 4257–4259 (2012).
[CrossRef] [PubMed]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
[CrossRef]

Jany, C.

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Keyvaninia, S.

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
[CrossRef]

Lamponi, M.

Le Liepvre, A.

Lelarge, F.

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Liu, B.

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
[CrossRef]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Make, D.

Paniccia, M. J.

Park, H.

Peters, J. D.

Roelkens, G.

Shakouri, A.

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
[CrossRef]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
[CrossRef]

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
[CrossRef]

Van Thourhout, D.

IEEE J. Quantum Electron. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid Silicon Photonic Integrated Circuit Technology,” IEEE J. Quantum Electron.19(4), 6100117 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
[CrossRef]

Laser Photon. Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (5)

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid silicon free-space source with integrated beam steering,” SPIE Photonics West 862911, (2013).

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III-V silicon photonic steerable laser,” Photonics Conference (IPC), 2012 IEEE, 1(2), 23–27 (2012).
[CrossRef]

A. Le Liepvre, C. Jany, A. Accard, M. Lamponi, F. Poingt, D. Make, F. Lelarge, J.-M. Fedeli, and S. Messaoudene, D. Bordel, and G.-H. Duan, “Widely wavelength tunable hybrid III–V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique,” Group IV Photonics (GFP), 2012 IEEE 9th International Conference on 54(56), 29–31 (2012).

A. Le Liepvre, C. Jany, A. Accard, M. Lamponi, F. Poingt, D. Make, F. Lelarge, J.-M. Fedeli, and S. Messaoudene, D. Bordel, and G.-H. Duan, “Widely wavelength tunable hybrid III-V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique,” Group IV Photonics (GFP), 2012 IEEE 9th Conference on 54(56), 29–31 (2012).

M. L. Davenport, M. J. R. Heck, and J. E. Bowers, “Characterization of a Hybrid Silicon-InP Laser Tapered Mode Converter” presented in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), poster JTu4A.25–1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic view of hybrid Vernier ring laser and (b) picture of fabricated device.

Fig. 2
Fig. 2

(a) Calculated cavity transmission of rings superimposed to display Vernier effect assuming 3 dB/cm waveguide loss and 10% coupling to bus waveguides. (b) Calculated coupled ring transmission. (c) Calculated full cavity transmission. Insets show ring cavity designs used for calculations. Ring transmission refers to power remaining in the ring cavity.

Fig. 3
Fig. 3

(a) Transmission data for full FSR of coupled rings. (b) Fine tuning data from ring filter 1 with round trip loss of 0.20 dB, coupling loss of 2.6% and FWHM of 0.022 radians. (c) Fine tuning data from ring filter 2 with round trip loss of 0.15 dB, coupling loss of 1.7% and FWHM of 0.020 radians.

Fig. 4
Fig. 4

(a) Beat signal from a delayed self-heterodyne measurement of laser measuring 338 kHz linewidth at 100 C and 260 mA pump current. (b) Single wavelength lasing showing SMSR greater than 45 dB at 100 C and 260 mA pump current.

Fig. 5
Fig. 5

(a) Superimposed spectra showing 0.1 nm resolution tuning over 2.5 nm. (b) Wavelength tuning as a function of heater power. (c) Superimposed spectra of coarse wavelength tuning over more than 40 nm with SMSR greater than 35 dB.

Metrics