Abstract

The terahertz (THz) radiation from transient dipoles, formed by distinct diffusion coefficients between oppositely charged carriers as often observed in low band gap semiconductors, propagates with an anisotropic amplitude distribution perpendicular to the dipole axis along the diffusive motion. By directionally adjusting the electronic diffusion, we conceptualize groove-patterned THz emitters based on (100) InAs thin films and demonstrate the unidirectional radiation. Line-of-sight emission along the surface-normal direction is greatly enhanced in a distributed asymmetric trapezoid with its period similar to the electronic diffusion length of InAs. This directional enhancement is in clear contrast to the constant emission amplitude along the lateral direction, regardless of pattern scale, which manifests the role of groove patterns as microscale reflectors in laterally corrugating the carrier density. In contrast to the rather limited nonlinearity in (100) plane, the azimuthal angle dependence of the THz field amplitude in corrugated samples shows a combined effect of diffusive transport and second-order nonlinearity, whose compositional contributions varies in different structures.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., P. Gu and M. Tani, “Terahertz radiation from semiconductor surfaces,” in Terahertz Optoelectronics, K. Sakai, eds. (Springer, 2005), pp. 63–97.
    [CrossRef]
  2. K. Liu, J. Xu, T. Yuan, and X. -C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330 (2006).
    [CrossRef]
  3. K. I. Lin, J. T. Tsai, T. S. Wang, J. S. Hwang, M. C. Chen, and G. C. Chi, “Drift current dominated terahertz radiation from InN at low-density excitation,” Appl. Phys. Lett.93, 262102 (2008).
    [CrossRef]
  4. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
    [CrossRef]
  5. D. -F. Liu and D. Xu, “Comparative study of terahertz radiation from n-InAs and n-GaAs,” Appl. Opt.46(5), 789–794 (2007).
    [CrossRef] [PubMed]
  6. P. Gu, M. Tani, S. Kono, K. Sakai, and X. -C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys.91(9), 5533–5537 (2002).
    [CrossRef]
  7. H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012).
    [CrossRef]
  8. M. Reid, I. V. Cravetchi, and R. Fedosejevs, “Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions,” Phys. Rev. B72, 035201 (2005).
    [CrossRef]
  9. Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk Gax In1−x As crystals,” Phys. Rev. B78, 035201 (2008).
    [CrossRef]
  10. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007).
    [CrossRef]
  11. See, e.g., M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett.95, 041112 (2009).
    [CrossRef]
  12. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18(5), 4939–4947 (2010).
    [CrossRef] [PubMed]
  13. G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
    [CrossRef]
  14. C. D’Amico, A. Houard, M. Franco, B. Prade, and A. Mysyrowicz, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett.98, 235002 (2007).
    [CrossRef]
  15. M. Yi, K. Lee, J. Lim, Y. Hong, Y. D. Jho, and J. Ahn, “Terahertz waves emitted from an optical fiber,” Opt. Express18(13), 13693–13699 (2010).
    [CrossRef] [PubMed]
  16. A. Fitzgerald, E. Berry, N. Zinovev, G. Walker, M. Smith, and J. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
    [CrossRef] [PubMed]
  17. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express16(21), 17039–17051 (2008).
    [CrossRef] [PubMed]
  18. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107, 111101 (2010).
    [CrossRef]
  19. J. H. Yim, K. Min, H. Jeong, E. H. Lee, J. D. Song, and Y. D. Jho, “Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs,” J. Appl. Phys.113, 136505 (2013).
    [CrossRef]
  20. Y. -S. Lee, Principle of Terahertz Science and Technology (Springer, 2009), pp. 21–24.
  21. C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys.48, 010211 (2009).
    [CrossRef]
  22. I. Säidi, S. B. Radhia, and K. Boujdaria, “Band parameters of GaAs, InAs, InP, and InSb in the 40-band k·p model,” J. Appl. Phys.107, 043701 (2010).
    [CrossRef]
  23. See, e.g., M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express14(21), 9944–9954 (2006).
    [CrossRef] [PubMed]
  24. R. Adomaviius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, “Terahertz emission from p-InAs due to the instantaneous polarization,” Appl. Phys. Lett.85(13), 2463–2465 (2004).
    [CrossRef]
  25. M. Reid and R. Fedosejevs, “Terahertz emission from InAs surfaces at high excitation fluences,” Appl. Phys. Lett.86, 011906 (2005).
    [CrossRef]
  26. D. H. McMahon, W. A. Dyes, R. F. Cooper, W. C. Robinson, and A. Mahapatra, “Echelon grating multiplexers for hierarchically multiplexed fiber-optic communication networks,” Appl. Opt.26(11), 2188–2196 (1987).
    [CrossRef] [PubMed]
  27. H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
    [CrossRef] [PubMed]

2013

J. H. Yim, K. Min, H. Jeong, E. H. Lee, J. D. Song, and Y. D. Jho, “Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs,” J. Appl. Phys.113, 136505 (2013).
[CrossRef]

2012

H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012).
[CrossRef]

2011

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

2010

M. Yi, K. Lee, J. Lim, Y. Hong, Y. D. Jho, and J. Ahn, “Terahertz waves emitted from an optical fiber,” Opt. Express18(13), 13693–13699 (2010).
[CrossRef] [PubMed]

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18(5), 4939–4947 (2010).
[CrossRef] [PubMed]

I. Säidi, S. B. Radhia, and K. Boujdaria, “Band parameters of GaAs, InAs, InP, and InSb in the 40-band k·p model,” J. Appl. Phys.107, 043701 (2010).
[CrossRef]

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107, 111101 (2010).
[CrossRef]

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

2009

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys.48, 010211 (2009).
[CrossRef]

See, e.g., M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett.95, 041112 (2009).
[CrossRef]

2008

C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express16(21), 17039–17051 (2008).
[CrossRef] [PubMed]

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk Gax In1−x As crystals,” Phys. Rev. B78, 035201 (2008).
[CrossRef]

K. I. Lin, J. T. Tsai, T. S. Wang, J. S. Hwang, M. C. Chen, and G. C. Chi, “Drift current dominated terahertz radiation from InN at low-density excitation,” Appl. Phys. Lett.93, 262102 (2008).
[CrossRef]

2007

D. -F. Liu and D. Xu, “Comparative study of terahertz radiation from n-InAs and n-GaAs,” Appl. Opt.46(5), 789–794 (2007).
[CrossRef] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007).
[CrossRef]

C. D’Amico, A. Houard, M. Franco, B. Prade, and A. Mysyrowicz, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett.98, 235002 (2007).
[CrossRef]

2006

K. Liu, J. Xu, T. Yuan, and X. -C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330 (2006).
[CrossRef]

See, e.g., M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express14(21), 9944–9954 (2006).
[CrossRef] [PubMed]

2005

M. Reid and R. Fedosejevs, “Terahertz emission from InAs surfaces at high excitation fluences,” Appl. Phys. Lett.86, 011906 (2005).
[CrossRef]

M. Reid, I. V. Cravetchi, and R. Fedosejevs, “Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions,” Phys. Rev. B72, 035201 (2005).
[CrossRef]

2004

R. Adomaviius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, “Terahertz emission from p-InAs due to the instantaneous polarization,” Appl. Phys. Lett.85(13), 2463–2465 (2004).
[CrossRef]

2002

P. Gu, M. Tani, S. Kono, K. Sakai, and X. -C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys.91(9), 5533–5537 (2002).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

A. Fitzgerald, E. Berry, N. Zinovev, G. Walker, M. Smith, and J. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

1987

Adomaviius, R.

R. Adomaviius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, “Terahertz emission from p-InAs due to the instantaneous polarization,” Appl. Phys. Lett.85(13), 2463–2465 (2004).
[CrossRef]

Ahn, J.

Bartels, A.

Bastian, G.

Beck, M.

Berry, E.

A. Fitzgerald, E. Berry, N. Zinovev, G. Walker, M. Smith, and J. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Blackshire, J. L.

Bohn, M. J.

Boujdaria, K.

I. Säidi, S. B. Radhia, and K. Boujdaria, “Band parameters of GaAs, InAs, InP, and InSb in the 40-band k·p model,” J. Appl. Phys.107, 043701 (2010).
[CrossRef]

Chamberlain, J.

A. Fitzgerald, E. Berry, N. Zinovev, G. Walker, M. Smith, and J. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Chen, M. C.

K. I. Lin, J. T. Tsai, T. S. Wang, J. S. Hwang, M. C. Chen, and G. C. Chi, “Drift current dominated terahertz radiation from InN at low-density excitation,” Appl. Phys. Lett.93, 262102 (2008).
[CrossRef]

Chen, S. -Y.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Chi, G. C.

K. I. Lin, J. T. Tsai, T. S. Wang, J. S. Hwang, M. C. Chen, and G. C. Chi, “Drift current dominated terahertz radiation from InN at low-density excitation,” Appl. Phys. Lett.93, 262102 (2008).
[CrossRef]

Choi, S. B.

H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012).
[CrossRef]

Chuang, S.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Chueh, Y. -L.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Cooper, R. F.

Corchia, A.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

Cravetchi, I. V.

M. Reid, I. V. Cravetchi, and R. Fedosejevs, “Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions,” Phys. Rev. B72, 035201 (2005).
[CrossRef]

D’Amico, C.

C. D’Amico, A. Houard, M. Franco, B. Prade, and A. Mysyrowicz, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett.98, 235002 (2007).
[CrossRef]

Davies, A. G.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

Dekorsy, T.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18(5), 4939–4947 (2010).
[CrossRef] [PubMed]

Dutta, P.

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk Gax In1−x As crystals,” Phys. Rev. B78, 035201 (2008).
[CrossRef]

Dyes, W. A.

Edamura, T.

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys.48, 010211 (2009).
[CrossRef]

Faist, J.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18(5), 4939–4947 (2010).
[CrossRef] [PubMed]

Fang, H.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107, 111101 (2010).
[CrossRef]

Fedosejevs, R.

M. Reid and R. Fedosejevs, “Terahertz emission from InAs surfaces at high excitation fluences,” Appl. Phys. Lett.86, 011906 (2005).
[CrossRef]

M. Reid, I. V. Cravetchi, and R. Fedosejevs, “Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions,” Phys. Rev. B72, 035201 (2005).
[CrossRef]

Fischer, M.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18(5), 4939–4947 (2010).
[CrossRef] [PubMed]

Fitzgerald, A.

A. Fitzgerald, E. Berry, N. Zinovev, G. Walker, M. Smith, and J. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Ford, A. C.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Franco, M.

C. D’Amico, A. Houard, M. Franco, B. Prade, and A. Mysyrowicz, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett.98, 235002 (2007).
[CrossRef]

Ganapathi, K.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Gebs, R.

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. -C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys.91(9), 5533–5537 (2002).
[CrossRef]

See, e.g., P. Gu and M. Tani, “Terahertz radiation from semiconductor surfaces,” in Terahertz Optoelectronics, K. Sakai, eds. (Springer, 2005), pp. 63–97.
[CrossRef]

Hangyo, M.

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys.48, 010211 (2009).
[CrossRef]

Hilser, F.

Hong, Y.

Houard, A.

C. D’Amico, A. Houard, M. Franco, B. Prade, and A. Mysyrowicz, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett.98, 235002 (2007).
[CrossRef]

Huber, R.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

Huska, K.

Hwang, J. S.

K. I. Lin, J. T. Tsai, T. S. Wang, J. S. Hwang, M. C. Chen, and G. C. Chi, “Drift current dominated terahertz radiation from InN at low-density excitation,” Appl. Phys. Lett.93, 262102 (2008).
[CrossRef]

Javey, A.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Jeong, H.

J. H. Yim, K. Min, H. Jeong, E. H. Lee, J. D. Song, and Y. D. Jho, “Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs,” J. Appl. Phys.113, 136505 (2013).
[CrossRef]

H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012).
[CrossRef]

Jho, Y. D.

J. H. Yim, K. Min, H. Jeong, E. H. Lee, J. D. Song, and Y. D. Jho, “Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs,” J. Appl. Phys.113, 136505 (2013).
[CrossRef]

H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012).
[CrossRef]

M. Yi, K. Lee, J. Lim, Y. Hong, Y. D. Jho, and J. Ahn, “Terahertz waves emitted from an optical fiber,” Opt. Express18(13), 13693–13699 (2010).
[CrossRef] [PubMed]

Johnston, M. B.

Kapadia, R.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Kim, H. S.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Kim, S. Y.

H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012).
[CrossRef]

Klatt, G.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. B. Johnston, M. Fischer, J. Faist, and T. Dekorsy, “Terahertz emission from lateral photo-Dember currents,” Opt. Express18(5), 4939–4947 (2010).
[CrossRef] [PubMed]

Ko, H.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Ko, Y.

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk Gax In1−x As crystals,” Phys. Rev. B78, 035201 (2008).
[CrossRef]

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. -C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys.91(9), 5533–5537 (2002).
[CrossRef]

Krishna, S.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Krotkus, A.

R. Adomaviius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, “Terahertz emission from p-InAs due to the instantaneous polarization,” Appl. Phys. Lett.85(13), 2463–2465 (2004).
[CrossRef]

Kurz, H.

See, e.g., M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett.95, 041112 (2009).
[CrossRef]

See, e.g., M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express14(21), 9944–9954 (2006).
[CrossRef] [PubMed]

Lee, D. S.

H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012).
[CrossRef]

Lee, E. H.

J. H. Yim, K. Min, H. Jeong, E. H. Lee, J. D. Song, and Y. D. Jho, “Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs,” J. Appl. Phys.113, 136505 (2013).
[CrossRef]

Lee, J.

H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012).
[CrossRef]

Lee, K.

Lee, Y. -S.

Y. -S. Lee, Principle of Terahertz Science and Technology (Springer, 2009), pp. 21–24.

Leitenstorfer, A.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

Lemmer, U.

Leu, P. W.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Lim, J.

Lin, K. I.

K. I. Lin, J. T. Tsai, T. S. Wang, J. S. Hwang, M. C. Chen, and G. C. Chi, “Drift current dominated terahertz radiation from InN at low-density excitation,” Appl. Phys. Lett.93, 262102 (2008).
[CrossRef]

Linfield, E. H.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

Liu, D. -F.

Liu, K.

K. Liu, J. Xu, T. Yuan, and X. -C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330 (2006).
[CrossRef]

Madsen, M.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Mahapatra, A.

Marchewka, A.

McMahon, D. H.

Min, K.

J. H. Yim, K. Min, H. Jeong, E. H. Lee, J. D. Song, and Y. D. Jho, “Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs,” J. Appl. Phys.113, 136505 (2013).
[CrossRef]

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107, 111101 (2010).
[CrossRef]

Molis, G.

R. Adomaviius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, “Terahertz emission from p-InAs due to the instantaneous polarization,” Appl. Phys. Lett.85(13), 2463–2465 (2004).
[CrossRef]

Mysyrowicz, A.

C. D’Amico, A. Houard, M. Franco, B. Prade, and A. Mysyrowicz, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett.98, 235002 (2007).
[CrossRef]

Nagel, M.

See, e.g., M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett.95, 041112 (2009).
[CrossRef]

See, e.g., M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express14(21), 9944–9954 (2006).
[CrossRef] [PubMed]

Nakajima, M.

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys.48, 010211 (2009).
[CrossRef]

Plis, E.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Prade, B.

C. D’Amico, A. Houard, M. Franco, B. Prade, and A. Mysyrowicz, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett.98, 235002 (2007).
[CrossRef]

Qiao, W.

Que, C. T.

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys.48, 010211 (2009).
[CrossRef]

Radhia, S. B.

I. Säidi, S. B. Radhia, and K. Boujdaria, “Band parameters of GaAs, InAs, InP, and InSb in the 40-band k·p model,” J. Appl. Phys.107, 043701 (2010).
[CrossRef]

Reid, M.

M. Reid and R. Fedosejevs, “Terahertz emission from InAs surfaces at high excitation fluences,” Appl. Phys. Lett.86, 011906 (2005).
[CrossRef]

M. Reid, I. V. Cravetchi, and R. Fedosejevs, “Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions,” Phys. Rev. B72, 035201 (2005).
[CrossRef]

Robinson, W. C.

Säidi, I.

I. Säidi, S. B. Radhia, and K. Boujdaria, “Band parameters of GaAs, InAs, InP, and InSb in the 40-band k·p model,” J. Appl. Phys.107, 043701 (2010).
[CrossRef]

Sakai, K.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. -C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys.91(9), 5533–5537 (2002).
[CrossRef]

Salahuddin, S.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Satkovskis, E.

R. Adomaviius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, “Terahertz emission from p-InAs due to the instantaneous polarization,” Appl. Phys. Lett.85(13), 2463–2465 (2004).
[CrossRef]

Schubert, O.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

Sengupta, S.

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk Gax In1−x As crystals,” Phys. Rev. B78, 035201 (2008).
[CrossRef]

Shin, S. H.

H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012).
[CrossRef]

Smith, M.

A. Fitzgerald, E. Berry, N. Zinovev, G. Walker, M. Smith, and J. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Song, J. D.

J. H. Yim, K. Min, H. Jeong, E. H. Lee, J. D. Song, and Y. D. Jho, “Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs,” J. Appl. Phys.113, 136505 (2013).
[CrossRef]

H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012).
[CrossRef]

Stephan, D.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

Stoik, C. D.

Surrer, B.

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

Takei, K.

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Tani, M.

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys.48, 010211 (2009).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X. -C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys.91(9), 5533–5537 (2002).
[CrossRef]

See, e.g., P. Gu and M. Tani, “Terahertz radiation from semiconductor surfaces,” in Terahertz Optoelectronics, K. Sakai, eds. (Springer, 2005), pp. 63–97.
[CrossRef]

Tomasulo, S.

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk Gax In1−x As crystals,” Phys. Rev. B78, 035201 (2008).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007).
[CrossRef]

Tsai, J. T.

K. I. Lin, J. T. Tsai, T. S. Wang, J. S. Hwang, M. C. Chen, and G. C. Chi, “Drift current dominated terahertz radiation from InN at low-density excitation,” Appl. Phys. Lett.93, 262102 (2008).
[CrossRef]

Urbanowicz, A.

R. Adomaviius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, “Terahertz emission from p-InAs due to the instantaneous polarization,” Appl. Phys. Lett.85(13), 2463–2465 (2004).
[CrossRef]

Wächter, M.

See, e.g., M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett.95, 041112 (2009).
[CrossRef]

Walker, G.

A. Fitzgerald, E. Berry, N. Zinovev, G. Walker, M. Smith, and J. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Wang, T. S.

K. I. Lin, J. T. Tsai, T. S. Wang, J. S. Hwang, M. C. Chen, and G. C. Chi, “Drift current dominated terahertz radiation from InN at low-density excitation,” Appl. Phys. Lett.93, 262102 (2008).
[CrossRef]

Whittaker, D. M.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

Wilke, I.

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk Gax In1−x As crystals,” Phys. Rev. B78, 035201 (2008).
[CrossRef]

Xu, D.

Xu, J.

K. Liu, J. Xu, T. Yuan, and X. -C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330 (2006).
[CrossRef]

Yi, M.

Yim, J. H.

J. H. Yim, K. Min, H. Jeong, E. H. Lee, J. D. Song, and Y. D. Jho, “Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs,” J. Appl. Phys.113, 136505 (2013).
[CrossRef]

Yuan, T.

K. Liu, J. Xu, T. Yuan, and X. -C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330 (2006).
[CrossRef]

Zhang, X. -C.

K. Liu, J. Xu, T. Yuan, and X. -C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330 (2006).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X. -C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys.91(9), 5533–5537 (2002).
[CrossRef]

Zinovev, N.

A. Fitzgerald, E. Berry, N. Zinovev, G. Walker, M. Smith, and J. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

R. Adomaviius, A. Urbanowicz, G. Molis, A. Krotkus, and E. Satkovskis, “Terahertz emission from p-InAs due to the instantaneous polarization,” Appl. Phys. Lett.85(13), 2463–2465 (2004).
[CrossRef]

M. Reid and R. Fedosejevs, “Terahertz emission from InAs surfaces at high excitation fluences,” Appl. Phys. Lett.86, 011906 (2005).
[CrossRef]

K. I. Lin, J. T. Tsai, T. S. Wang, J. S. Hwang, M. C. Chen, and G. C. Chi, “Drift current dominated terahertz radiation from InN at low-density excitation,” Appl. Phys. Lett.93, 262102 (2008).
[CrossRef]

See, e.g., M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett.95, 041112 (2009).
[CrossRef]

G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, “Photo-Dember terahertz emitter excited with an Er:fiber laser,” Appl. Phys. Lett.98, 021114 (2011).
[CrossRef]

Curr. Appl. Phys.

H. Jeong, S. H. Shin, S. Y. Kim, J. D. Song, S. B. Choi, D. S. Lee, J. Lee, and Y. D. Jho, “Relation between phase and generation mechanisms of THz waves in InAs,” Curr. Appl. Phys.12, 668–672 (2012).
[CrossRef]

J. Appl. Phys.

P. Gu, M. Tani, S. Kono, K. Sakai, and X. -C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys.91(9), 5533–5537 (2002).
[CrossRef]

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys.107, 111101 (2010).
[CrossRef]

J. H. Yim, K. Min, H. Jeong, E. H. Lee, J. D. Song, and Y. D. Jho, “Nexus between directionality of terahertz waves and structural parameters in groove patterned InAs,” J. Appl. Phys.113, 136505 (2013).
[CrossRef]

I. Säidi, S. B. Radhia, and K. Boujdaria, “Band parameters of GaAs, InAs, InP, and InSb in the 40-band k·p model,” J. Appl. Phys.107, 043701 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys.48, 010211 (2009).
[CrossRef]

Nat. Photonics

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007).
[CrossRef]

Nature

H. Ko, K. Takei, R. Kapadia, S. Chuang, H. Fang, P. W. Leu, K. Ganapathi, E. Plis, H. S. Kim, S. -Y. Chen, M. Madsen, A. C. Ford, Y. -L. Chueh, S. Krishna, S. Salahuddin, and A. Javey, “Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors,” Nature468, 286–289 (2010).
[CrossRef] [PubMed]

Opt. Express

Phys. Med. Biol.

A. Fitzgerald, E. Berry, N. Zinovev, G. Walker, M. Smith, and J. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47, R67–R84 (2002).
[CrossRef] [PubMed]

Phys. Rev. B

M. Reid, I. V. Cravetchi, and R. Fedosejevs, “Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions,” Phys. Rev. B72, 035201 (2005).
[CrossRef]

Y. Ko, S. Sengupta, S. Tomasulo, P. Dutta, and I. Wilke, “Emission of terahertz-frequency electromagnetic radiation from bulk Gax In1−x As crystals,” Phys. Rev. B78, 035201 (2008).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B65, 165301 (2002).
[CrossRef]

K. Liu, J. Xu, T. Yuan, and X. -C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B73, 155330 (2006).
[CrossRef]

Phys. Rev. Lett.

C. D’Amico, A. Houard, M. Franco, B. Prade, and A. Mysyrowicz, “Conical forward THz emission from femtosecond-laser-beam filamentation in air,” Phys. Rev. Lett.98, 235002 (2007).
[CrossRef]

Other

See, e.g., P. Gu and M. Tani, “Terahertz radiation from semiconductor surfaces,” in Terahertz Optoelectronics, K. Sakai, eds. (Springer, 2005), pp. 63–97.
[CrossRef]

Y. -S. Lee, Principle of Terahertz Science and Technology (Springer, 2009), pp. 21–24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustrations of THz generation processes (a) without and (b) with groove patterns. Excitation laser beams (shaded red cone) are incident at surface normal angle (θ≡ 90°), and diffusion direction of the photo-generated electrons (red dots) and holes (blue dots) determine THz radiation patterns (green divergent cones) accordingly. (c) SEM images of the fabricated patterns with W of 0.5 μm (left), 1.2 μm (middle) and 2.5 μm (right).

Fig. 2
Fig. 2

THz time-domain signals from (a) 1 μm-thick bare InAs layer without patterns at different incident angles (θ =45° or θ =90°), and (b) InAs layers with different pattern widths W in a transmission geometry (non-solid lines), in comparison to InAs layer without patterns (solid line). Insets in (a,b) show reflective (θ =45°) and transmissive (θ =90°) detection schemes. (c) Fourier transform spectra obtained from Fig. 2(b).

Fig. 3
Fig. 3

THz time-domain signals in lateral detection geometry, emitted from (a) groove patterned InAs layers (non-solid lines) in comparison to InAs layer without groove patterns (solid line). The offsets adjusted for clarity of signals. (b) Fourier transformed spectra, obtained from (a). (c) THz emission amplitude enhancement ratios of the patterned layer to the bare layer in the normal and lateral detection geometries.

Fig. 4
Fig. 4

(a) The azimuthal angle dependence of THz wave amplitude in reflection geometry, measured from groove-patterned layers (open dot) in comparison to non-patterned layer (solid dot). The azimuthal angle dependence of THz wave amplitude in transmission geometry (open dot), measured in patterned layers with W equal to (b) 1.2 μm, (c) 0.5 μm and (d) 2.5 μm. In (b–d), experimental data is compared to fitting curves (solid lines) whose relevant 1.2 μm parameters are displayed in insets.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E T H z = P cos ϕ + ( S ( 110 ) 0 + B ( 100 ) 0 ) cos 2 ϕ + B ( 110 ) 1 sin ϕ + B ( 110 ) 2 sin 3 ϕ + S ( 100 ) 1 + S ( 110 ) 1 ,

Metrics