Abstract

A model for the optical path difference introduced by a soap bubble in transmission is described. The model is then used with interferometric data to solve for the fringe order, and to define a procedure to extract the global film thickness in presence of turbulence flows occurring during the drainage process due to gravity. Experimental results on soap bubbles examined in single-pass phase-shift interferometry are presented.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. V. Boys, Soap Bubbles and the Forces that Mould Them (Dover, 1958).
  2. K. J. Mysels, K. Shinoda, and S. Frankel, Soap Films, Studies of Their Thinning (Pergamon, 1959).
  3. J. N. Israelashvili, Intermolecular and Surface Forces (Academic, 1985).
  4. I. B. Ivanov, ed., Thin Liquid Films, Fundamentals and Applications (Dekker, 1988).
  5. O. Bélorgey and J. J. Benattar, “Structural properties of soap black films investigated by X-ray reflectivity,” Phys. Rev. Lett.66(3), 313–316 (1991).
    [CrossRef] [PubMed]
  6. J. J. Benattar, J. Daillant, O. Bélorgey, and L. Bosio, “Langmuir monolayers and Newton black films: two-dimensional systems investigated by X-ray reflectivity,” Physica A172(1-2), 225–241 (1991).
    [CrossRef]
  7. S. Cohen-Addad, J. M. Di Meglio, and R. Ober, “Épaisseur d’un film noir de savon contenant un polymère hydrosoluble,” C. R. Acad. Sci, Paris Série II315, 39–44 (1992).
  8. S. Lionti-Addad and J. M. Di Meglio, “Stabilization of aqueous foam by hydrosoluble polymers. 1. Sodium dodecyl sulphate-poly(ethylene oxide) system,” Langmuir8(1), 324–327 (1992).
    [CrossRef]
  9. A. S. Dimitrov, P. A. Kralchevsky, A. D. Nikolov, and D. T. Wasan, “Contact angles of thin liquid films: interferometric determination,” Colloids Surf.47, 299–321 (1990).
    [CrossRef]
  10. A. D. Nikolov, P. A. Kralchevsky, and I. B. Ivanov, “Film and line tension effects on the attachment of particles to an interface,” J. Colloid Interface Sci.112(1), 122–131 (1986).
    [CrossRef]
  11. G. Pretzler, H. Jäger, and T. Neger, “High-accuracy differential interferometry for the investigation of phase objects,” Meas. Sci. Technol.4(6), 649–658 (1993).
    [CrossRef]
  12. T. Mishima and K. C. Kao, “Determination of 2-D thickness distributions of low absorbing thin films by new laser interferometry,” Appl. Opt.21(16), 2894–2896 (1982).
    [CrossRef] [PubMed]
  13. A. González-Cano and E. Bernabáu, “Automatic interference method for measuring transparent film thickness,” Appl. Opt.32(13), 2292–2294 (1993).
    [CrossRef] [PubMed]
  14. V. Greco, C. Lemmi, S. Ledesma, G. Molesini, G. P. Puccioni, and F. Quercioli, “Measuring soap black films by phase shifting interferometry,” Meas. Sci. Technol.5(8), 900–903 (1994).
    [CrossRef]
  15. V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum.66(7), 3729–3734 (1995).
    [CrossRef]
  16. V. Greco and G. Molesini, “Monitoring the thickness of soap films by polarization homodyne interferometry,” Meas. Sci. Technol.7(1), 96–101 (1996).
    [CrossRef]
  17. O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett.88(19), 194101 (2002).
    [CrossRef] [PubMed]
  18. M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun.229(1-6), 29–37 (2004).
    [CrossRef]
  19. X. Wang and H. Qiu, “Fringe probing of gas-liquid interfacial film in a microcapillary tube,” Appl. Opt.44(22), 4648–4653 (2005).
    [CrossRef] [PubMed]
  20. A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng.30(1-2), 28–36 (2009).
    [CrossRef]
  21. G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap films,” Appl. Phys. Lett.88(23), 234104 (2006).
    [CrossRef]
  22. S. N. Tan, Y. Yang, and R. G. Horn, “Thinning of a vertical free-draining aqueous film incorporating colloidal particles,” Langmuir26(1), 63–73 (2010).
    [CrossRef] [PubMed]
  23. L. Liggieri, F. Ravera, and A. Passerone, “Dynamic interfacial tension measurements by a capillary pressure method,” J. Colloid Interface Sci.169(1), 226–237 (1995).
    [CrossRef]
  24. W. Lv, H. Zhou, C. Lou, and J. Zhu, “Spatial and temporal film thickness measurement of a soap bubble based on large lateral shearing displacement interferometry,” Appl. Opt.51(36), 8863–8872 (2012).
    [CrossRef] [PubMed]
  25. F. Seychelles, Y. Amarouchene, M. Bessafi, and H. Kellay, “Thermal convection and emergence of isolated vortices in soap bubbles,” Phys. Rev. Lett.100(14), 144501 (2008).
    [CrossRef] [PubMed]
  26. B. Edlén, “The refractive index of air,” Metrologia2(2), 71–80 (1966).
    [CrossRef]
  27. C. Isenberg, The Science of Soap Films and Soap Bubbles (Dover, 1992, pp. 14).
  28. V. Greco, G. Molesini, F. Quercioli, and A. Novi, “Interferometric testing of weak aspheric surfaces versus design specifications,” Optik (Stuttg.)87, 159–162 (1991).
  29. D. Malacara, Optical Shop Testing (John Wiley & Sons, 2007).

2012 (1)

2010 (1)

S. N. Tan, Y. Yang, and R. G. Horn, “Thinning of a vertical free-draining aqueous film incorporating colloidal particles,” Langmuir26(1), 63–73 (2010).
[CrossRef] [PubMed]

2009 (1)

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng.30(1-2), 28–36 (2009).
[CrossRef]

2008 (1)

F. Seychelles, Y. Amarouchene, M. Bessafi, and H. Kellay, “Thermal convection and emergence of isolated vortices in soap bubbles,” Phys. Rev. Lett.100(14), 144501 (2008).
[CrossRef] [PubMed]

2006 (1)

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap films,” Appl. Phys. Lett.88(23), 234104 (2006).
[CrossRef]

2005 (1)

2004 (1)

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun.229(1-6), 29–37 (2004).
[CrossRef]

2002 (1)

O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett.88(19), 194101 (2002).
[CrossRef] [PubMed]

1996 (1)

V. Greco and G. Molesini, “Monitoring the thickness of soap films by polarization homodyne interferometry,” Meas. Sci. Technol.7(1), 96–101 (1996).
[CrossRef]

1995 (2)

V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum.66(7), 3729–3734 (1995).
[CrossRef]

L. Liggieri, F. Ravera, and A. Passerone, “Dynamic interfacial tension measurements by a capillary pressure method,” J. Colloid Interface Sci.169(1), 226–237 (1995).
[CrossRef]

1994 (1)

V. Greco, C. Lemmi, S. Ledesma, G. Molesini, G. P. Puccioni, and F. Quercioli, “Measuring soap black films by phase shifting interferometry,” Meas. Sci. Technol.5(8), 900–903 (1994).
[CrossRef]

1993 (2)

G. Pretzler, H. Jäger, and T. Neger, “High-accuracy differential interferometry for the investigation of phase objects,” Meas. Sci. Technol.4(6), 649–658 (1993).
[CrossRef]

A. González-Cano and E. Bernabáu, “Automatic interference method for measuring transparent film thickness,” Appl. Opt.32(13), 2292–2294 (1993).
[CrossRef] [PubMed]

1992 (2)

S. Cohen-Addad, J. M. Di Meglio, and R. Ober, “Épaisseur d’un film noir de savon contenant un polymère hydrosoluble,” C. R. Acad. Sci, Paris Série II315, 39–44 (1992).

S. Lionti-Addad and J. M. Di Meglio, “Stabilization of aqueous foam by hydrosoluble polymers. 1. Sodium dodecyl sulphate-poly(ethylene oxide) system,” Langmuir8(1), 324–327 (1992).
[CrossRef]

1991 (3)

O. Bélorgey and J. J. Benattar, “Structural properties of soap black films investigated by X-ray reflectivity,” Phys. Rev. Lett.66(3), 313–316 (1991).
[CrossRef] [PubMed]

J. J. Benattar, J. Daillant, O. Bélorgey, and L. Bosio, “Langmuir monolayers and Newton black films: two-dimensional systems investigated by X-ray reflectivity,” Physica A172(1-2), 225–241 (1991).
[CrossRef]

V. Greco, G. Molesini, F. Quercioli, and A. Novi, “Interferometric testing of weak aspheric surfaces versus design specifications,” Optik (Stuttg.)87, 159–162 (1991).

1990 (1)

A. S. Dimitrov, P. A. Kralchevsky, A. D. Nikolov, and D. T. Wasan, “Contact angles of thin liquid films: interferometric determination,” Colloids Surf.47, 299–321 (1990).
[CrossRef]

1986 (1)

A. D. Nikolov, P. A. Kralchevsky, and I. B. Ivanov, “Film and line tension effects on the attachment of particles to an interface,” J. Colloid Interface Sci.112(1), 122–131 (1986).
[CrossRef]

1982 (1)

1966 (1)

B. Edlén, “The refractive index of air,” Metrologia2(2), 71–80 (1966).
[CrossRef]

Amarouchene, Y.

F. Seychelles, Y. Amarouchene, M. Bessafi, and H. Kellay, “Thermal convection and emergence of isolated vortices in soap bubbles,” Phys. Rev. Lett.100(14), 144501 (2008).
[CrossRef] [PubMed]

O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett.88(19), 194101 (2002).
[CrossRef] [PubMed]

Angel, L.

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun.229(1-6), 29–37 (2004).
[CrossRef]

Bélorgey, O.

J. J. Benattar, J. Daillant, O. Bélorgey, and L. Bosio, “Langmuir monolayers and Newton black films: two-dimensional systems investigated by X-ray reflectivity,” Physica A172(1-2), 225–241 (1991).
[CrossRef]

O. Bélorgey and J. J. Benattar, “Structural properties of soap black films investigated by X-ray reflectivity,” Phys. Rev. Lett.66(3), 313–316 (1991).
[CrossRef] [PubMed]

Benattar, J. J.

O. Bélorgey and J. J. Benattar, “Structural properties of soap black films investigated by X-ray reflectivity,” Phys. Rev. Lett.66(3), 313–316 (1991).
[CrossRef] [PubMed]

J. J. Benattar, J. Daillant, O. Bélorgey, and L. Bosio, “Langmuir monolayers and Newton black films: two-dimensional systems investigated by X-ray reflectivity,” Physica A172(1-2), 225–241 (1991).
[CrossRef]

Bernabáu, E.

Bessafi, M.

F. Seychelles, Y. Amarouchene, M. Bessafi, and H. Kellay, “Thermal convection and emergence of isolated vortices in soap bubbles,” Phys. Rev. Lett.100(14), 144501 (2008).
[CrossRef] [PubMed]

Bolognini, N.

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun.229(1-6), 29–37 (2004).
[CrossRef]

Bosio, L.

J. J. Benattar, J. Daillant, O. Bélorgey, and L. Bosio, “Langmuir monolayers and Newton black films: two-dimensional systems investigated by X-ray reflectivity,” Physica A172(1-2), 225–241 (1991).
[CrossRef]

Boyd, R. W.

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap films,” Appl. Phys. Lett.88(23), 234104 (2006).
[CrossRef]

Chauvat, D.

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap films,” Appl. Phys. Lett.88(23), 234104 (2006).
[CrossRef]

Cohen-Addad, S.

S. Cohen-Addad, J. M. Di Meglio, and R. Ober, “Épaisseur d’un film noir de savon contenant un polymère hydrosoluble,” C. R. Acad. Sci, Paris Série II315, 39–44 (1992).

Daillant, J.

J. J. Benattar, J. Daillant, O. Bélorgey, and L. Bosio, “Langmuir monolayers and Newton black films: two-dimensional systems investigated by X-ray reflectivity,” Physica A172(1-2), 225–241 (1991).
[CrossRef]

Di Meglio, J. M.

S. Lionti-Addad and J. M. Di Meglio, “Stabilization of aqueous foam by hydrosoluble polymers. 1. Sodium dodecyl sulphate-poly(ethylene oxide) system,” Langmuir8(1), 324–327 (1992).
[CrossRef]

S. Cohen-Addad, J. M. Di Meglio, and R. Ober, “Épaisseur d’un film noir de savon contenant un polymère hydrosoluble,” C. R. Acad. Sci, Paris Série II315, 39–44 (1992).

Dimitrov, A. S.

A. S. Dimitrov, P. A. Kralchevsky, A. D. Nikolov, and D. T. Wasan, “Contact angles of thin liquid films: interferometric determination,” Colloids Surf.47, 299–321 (1990).
[CrossRef]

Edlén, B.

B. Edlén, “The refractive index of air,” Metrologia2(2), 71–80 (1966).
[CrossRef]

González-Cano, A.

Greco, V.

V. Greco and G. Molesini, “Monitoring the thickness of soap films by polarization homodyne interferometry,” Meas. Sci. Technol.7(1), 96–101 (1996).
[CrossRef]

V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum.66(7), 3729–3734 (1995).
[CrossRef]

V. Greco, C. Lemmi, S. Ledesma, G. Molesini, G. P. Puccioni, and F. Quercioli, “Measuring soap black films by phase shifting interferometry,” Meas. Sci. Technol.5(8), 900–903 (1994).
[CrossRef]

V. Greco, G. Molesini, F. Quercioli, and A. Novi, “Interferometric testing of weak aspheric surfaces versus design specifications,” Optik (Stuttg.)87, 159–162 (1991).

Greffier, O.

O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett.88(19), 194101 (2002).
[CrossRef] [PubMed]

Horn, R. G.

S. N. Tan, Y. Yang, and R. G. Horn, “Thinning of a vertical free-draining aqueous film incorporating colloidal particles,” Langmuir26(1), 63–73 (2010).
[CrossRef] [PubMed]

Ivanov, I. B.

A. D. Nikolov, P. A. Kralchevsky, and I. B. Ivanov, “Film and line tension effects on the attachment of particles to an interface,” J. Colloid Interface Sci.112(1), 122–131 (1986).
[CrossRef]

Jäger, H.

G. Pretzler, H. Jäger, and T. Neger, “High-accuracy differential interferometry for the investigation of phase objects,” Meas. Sci. Technol.4(6), 649–658 (1993).
[CrossRef]

Kagawa, M.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng.30(1-2), 28–36 (2009).
[CrossRef]

Kao, K. C.

Kariyasaki, A.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng.30(1-2), 28–36 (2009).
[CrossRef]

Kellay, H.

F. Seychelles, Y. Amarouchene, M. Bessafi, and H. Kellay, “Thermal convection and emergence of isolated vortices in soap bubbles,” Phys. Rev. Lett.100(14), 144501 (2008).
[CrossRef] [PubMed]

O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett.88(19), 194101 (2002).
[CrossRef] [PubMed]

Kralchevsky, P. A.

A. S. Dimitrov, P. A. Kralchevsky, A. D. Nikolov, and D. T. Wasan, “Contact angles of thin liquid films: interferometric determination,” Colloids Surf.47, 299–321 (1990).
[CrossRef]

A. D. Nikolov, P. A. Kralchevsky, and I. B. Ivanov, “Film and line tension effects on the attachment of particles to an interface,” J. Colloid Interface Sci.112(1), 122–131 (1986).
[CrossRef]

Le Floch, A.

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap films,” Appl. Phys. Lett.88(23), 234104 (2006).
[CrossRef]

Ledesma, S.

V. Greco, C. Lemmi, S. Ledesma, G. Molesini, G. P. Puccioni, and F. Quercioli, “Measuring soap black films by phase shifting interferometry,” Meas. Sci. Technol.5(8), 900–903 (1994).
[CrossRef]

Lemmi, C.

V. Greco, C. Lemmi, S. Ledesma, G. Molesini, G. P. Puccioni, and F. Quercioli, “Measuring soap black films by phase shifting interferometry,” Meas. Sci. Technol.5(8), 900–903 (1994).
[CrossRef]

Liggieri, L.

L. Liggieri, F. Ravera, and A. Passerone, “Dynamic interfacial tension measurements by a capillary pressure method,” J. Colloid Interface Sci.169(1), 226–237 (1995).
[CrossRef]

Lionti-Addad, S.

S. Lionti-Addad and J. M. Di Meglio, “Stabilization of aqueous foam by hydrosoluble polymers. 1. Sodium dodecyl sulphate-poly(ethylene oxide) system,” Langmuir8(1), 324–327 (1992).
[CrossRef]

Lou, C.

Lv, W.

Mishima, T.

Molesini, G.

V. Greco and G. Molesini, “Monitoring the thickness of soap films by polarization homodyne interferometry,” Meas. Sci. Technol.7(1), 96–101 (1996).
[CrossRef]

V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum.66(7), 3729–3734 (1995).
[CrossRef]

V. Greco, C. Lemmi, S. Ledesma, G. Molesini, G. P. Puccioni, and F. Quercioli, “Measuring soap black films by phase shifting interferometry,” Meas. Sci. Technol.5(8), 900–903 (1994).
[CrossRef]

V. Greco, G. Molesini, F. Quercioli, and A. Novi, “Interferometric testing of weak aspheric surfaces versus design specifications,” Optik (Stuttg.)87, 159–162 (1991).

Morooka, S.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng.30(1-2), 28–36 (2009).
[CrossRef]

Nagashima, T.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng.30(1-2), 28–36 (2009).
[CrossRef]

Neger, T.

G. Pretzler, H. Jäger, and T. Neger, “High-accuracy differential interferometry for the investigation of phase objects,” Meas. Sci. Technol.4(6), 649–658 (1993).
[CrossRef]

Nikolov, A. D.

A. S. Dimitrov, P. A. Kralchevsky, A. D. Nikolov, and D. T. Wasan, “Contact angles of thin liquid films: interferometric determination,” Colloids Surf.47, 299–321 (1990).
[CrossRef]

A. D. Nikolov, P. A. Kralchevsky, and I. B. Ivanov, “Film and line tension effects on the attachment of particles to an interface,” J. Colloid Interface Sci.112(1), 122–131 (1986).
[CrossRef]

Novi, A.

V. Greco, G. Molesini, F. Quercioli, and A. Novi, “Interferometric testing of weak aspheric surfaces versus design specifications,” Optik (Stuttg.)87, 159–162 (1991).

O’Sullivan-Hale, M. N.

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap films,” Appl. Phys. Lett.88(23), 234104 (2006).
[CrossRef]

Ober, R.

S. Cohen-Addad, J. M. Di Meglio, and R. Ober, “Épaisseur d’un film noir de savon contenant un polymère hydrosoluble,” C. R. Acad. Sci, Paris Série II315, 39–44 (1992).

Ousaka, A.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng.30(1-2), 28–36 (2009).
[CrossRef]

Passerone, A.

L. Liggieri, F. Ravera, and A. Passerone, “Dynamic interfacial tension measurements by a capillary pressure method,” J. Colloid Interface Sci.169(1), 226–237 (1995).
[CrossRef]

Pretzler, G.

G. Pretzler, H. Jäger, and T. Neger, “High-accuracy differential interferometry for the investigation of phase objects,” Meas. Sci. Technol.4(6), 649–658 (1993).
[CrossRef]

Puccioni, G. P.

V. Greco, C. Lemmi, S. Ledesma, G. Molesini, G. P. Puccioni, and F. Quercioli, “Measuring soap black films by phase shifting interferometry,” Meas. Sci. Technol.5(8), 900–903 (1994).
[CrossRef]

Qiu, H.

Quercioli, F.

V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum.66(7), 3729–3734 (1995).
[CrossRef]

V. Greco, C. Lemmi, S. Ledesma, G. Molesini, G. P. Puccioni, and F. Quercioli, “Measuring soap black films by phase shifting interferometry,” Meas. Sci. Technol.5(8), 900–903 (1994).
[CrossRef]

V. Greco, G. Molesini, F. Quercioli, and A. Novi, “Interferometric testing of weak aspheric surfaces versus design specifications,” Optik (Stuttg.)87, 159–162 (1991).

Ravera, F.

L. Liggieri, F. Ravera, and A. Passerone, “Dynamic interfacial tension measurements by a capillary pressure method,” J. Colloid Interface Sci.169(1), 226–237 (1995).
[CrossRef]

Ropars, G.

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap films,” Appl. Phys. Lett.88(23), 234104 (2006).
[CrossRef]

Seychelles, F.

F. Seychelles, Y. Amarouchene, M. Bessafi, and H. Kellay, “Thermal convection and emergence of isolated vortices in soap bubbles,” Phys. Rev. Lett.100(14), 144501 (2008).
[CrossRef] [PubMed]

Tan, S. N.

S. N. Tan, Y. Yang, and R. G. Horn, “Thinning of a vertical free-draining aqueous film incorporating colloidal particles,” Langmuir26(1), 63–73 (2010).
[CrossRef] [PubMed]

Tebaldi, M.

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun.229(1-6), 29–37 (2004).
[CrossRef]

Trivi, M.

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun.229(1-6), 29–37 (2004).
[CrossRef]

Wang, X.

Wasan, D. T.

A. S. Dimitrov, P. A. Kralchevsky, A. D. Nikolov, and D. T. Wasan, “Contact angles of thin liquid films: interferometric determination,” Colloids Surf.47, 299–321 (1990).
[CrossRef]

Yamasaki, Y.

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng.30(1-2), 28–36 (2009).
[CrossRef]

Yang, Y.

S. N. Tan, Y. Yang, and R. G. Horn, “Thinning of a vertical free-draining aqueous film incorporating colloidal particles,” Langmuir26(1), 63–73 (2010).
[CrossRef] [PubMed]

Zhou, H.

Zhu, J.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

G. Ropars, D. Chauvat, A. Le Floch, M. N. O’Sullivan-Hale, and R. W. Boyd, “Dynamics of gravity-induced gradients in soap films,” Appl. Phys. Lett.88(23), 234104 (2006).
[CrossRef]

C. R. Acad. Sci, Paris Série II (1)

S. Cohen-Addad, J. M. Di Meglio, and R. Ober, “Épaisseur d’un film noir de savon contenant un polymère hydrosoluble,” C. R. Acad. Sci, Paris Série II315, 39–44 (1992).

Colloids Surf. (1)

A. S. Dimitrov, P. A. Kralchevsky, A. D. Nikolov, and D. T. Wasan, “Contact angles of thin liquid films: interferometric determination,” Colloids Surf.47, 299–321 (1990).
[CrossRef]

Heat Transf. Eng. (1)

A. Kariyasaki, Y. Yamasaki, M. Kagawa, T. Nagashima, A. Ousaka, and S. Morooka, “Measurement of liquid film thickness by a fringe method,” Heat Transf. Eng.30(1-2), 28–36 (2009).
[CrossRef]

J. Colloid Interface Sci. (2)

L. Liggieri, F. Ravera, and A. Passerone, “Dynamic interfacial tension measurements by a capillary pressure method,” J. Colloid Interface Sci.169(1), 226–237 (1995).
[CrossRef]

A. D. Nikolov, P. A. Kralchevsky, and I. B. Ivanov, “Film and line tension effects on the attachment of particles to an interface,” J. Colloid Interface Sci.112(1), 122–131 (1986).
[CrossRef]

Langmuir (2)

S. Lionti-Addad and J. M. Di Meglio, “Stabilization of aqueous foam by hydrosoluble polymers. 1. Sodium dodecyl sulphate-poly(ethylene oxide) system,” Langmuir8(1), 324–327 (1992).
[CrossRef]

S. N. Tan, Y. Yang, and R. G. Horn, “Thinning of a vertical free-draining aqueous film incorporating colloidal particles,” Langmuir26(1), 63–73 (2010).
[CrossRef] [PubMed]

Meas. Sci. Technol. (3)

G. Pretzler, H. Jäger, and T. Neger, “High-accuracy differential interferometry for the investigation of phase objects,” Meas. Sci. Technol.4(6), 649–658 (1993).
[CrossRef]

V. Greco and G. Molesini, “Monitoring the thickness of soap films by polarization homodyne interferometry,” Meas. Sci. Technol.7(1), 96–101 (1996).
[CrossRef]

V. Greco, C. Lemmi, S. Ledesma, G. Molesini, G. P. Puccioni, and F. Quercioli, “Measuring soap black films by phase shifting interferometry,” Meas. Sci. Technol.5(8), 900–903 (1994).
[CrossRef]

Metrologia (1)

B. Edlén, “The refractive index of air,” Metrologia2(2), 71–80 (1966).
[CrossRef]

Opt. Commun. (1)

M. Tebaldi, L. Angel, N. Bolognini, and M. Trivi, “Speckle interferometric technique to assess soap films,” Opt. Commun.229(1-6), 29–37 (2004).
[CrossRef]

Optik (Stuttg.) (1)

V. Greco, G. Molesini, F. Quercioli, and A. Novi, “Interferometric testing of weak aspheric surfaces versus design specifications,” Optik (Stuttg.)87, 159–162 (1991).

Phys. Rev. Lett. (3)

F. Seychelles, Y. Amarouchene, M. Bessafi, and H. Kellay, “Thermal convection and emergence of isolated vortices in soap bubbles,” Phys. Rev. Lett.100(14), 144501 (2008).
[CrossRef] [PubMed]

O. Greffier, Y. Amarouchene, and H. Kellay, “Thickness fluctuations in turbulent soap films,” Phys. Rev. Lett.88(19), 194101 (2002).
[CrossRef] [PubMed]

O. Bélorgey and J. J. Benattar, “Structural properties of soap black films investigated by X-ray reflectivity,” Phys. Rev. Lett.66(3), 313–316 (1991).
[CrossRef] [PubMed]

Physica A (1)

J. J. Benattar, J. Daillant, O. Bélorgey, and L. Bosio, “Langmuir monolayers and Newton black films: two-dimensional systems investigated by X-ray reflectivity,” Physica A172(1-2), 225–241 (1991).
[CrossRef]

Rev. Sci. Instrum. (1)

V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum.66(7), 3729–3734 (1995).
[CrossRef]

Other (6)

C. V. Boys, Soap Bubbles and the Forces that Mould Them (Dover, 1958).

K. J. Mysels, K. Shinoda, and S. Frankel, Soap Films, Studies of Their Thinning (Pergamon, 1959).

J. N. Israelashvili, Intermolecular and Surface Forces (Academic, 1985).

I. B. Ivanov, ed., Thin Liquid Films, Fundamentals and Applications (Dekker, 1988).

D. Malacara, Optical Shop Testing (John Wiley & Sons, 2007).

C. Isenberg, The Science of Soap Films and Soap Bubbles (Dover, 1992, pp. 14).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical path through a soap bubble in a sectional plane that contains the bubble center, taken as the origin O of the coordinate system, and the z-axis singled out by the direction of propagation of light. (a), refraction of a ray (red line) at a plane parallel plate of refractive index n in air; (b) scheme of an axial ray at height y passing through the bubble.

Fig. 2
Fig. 2

Optical path difference OPD (q) due to single pass through the entrance and exit films of a water bubble in air. The film thickness is 100 nm.

Fig. 3
Fig. 3

Schematic of the optical configuration used in the laboratory to measure the thickness of the soap bubble (top view).

Fig. 4
Fig. 4

Single pass interferogram of a real bubble on a nozzle.

Fig. 5
Fig. 5

Fitting the no-data points of Fig. 4 to a circle.

Fig. 6
Fig. 6

Single-pass OPD map obtained with standard phase-shift acquisition and processing.

Fig. 7
Fig. 7

Central section’s profile of the OPD map shown in Fig. 6.

Tables (2)

Tables Icon

Table 1 Numerical values for the parameters ak of the power series expansion representing f (q, n = 1.333)

Tables Icon

Table 2 Interferometric System Specifications

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

OPD=d ncos( ϑ ϑ 0 ) cosϑ ,
OPD(d,q,n)=df(q,n) ,
f(q,n)=2 ncos( ϑ ϑ 0 ) cosϑ ;
Δ n air =( n air 1)( ΔP P ΔT T ) ,
ΔP= 4κ R ,
P A V A γ = P B V B γ ,
W AB = A B PdV= 1 1γ P A V A γ ( V B 1γ V A 1γ ) .
ΔT= W c V B ,
Δ n air =Δ n air,ΔP +Δ n air,ΔT =2.9 10 7 .
f(q,n)= k=0 N a k q 2k = a 0 + a 1 q 2 + a 2 q 4 ++ a N q 2N .
f 1 =1.0 , f 2 =qcosφ , f 3 =qsinφ , f 4 = a 1 q 2 + a 2 q 4 + a 3 q 6 + a 4 q 8 + a 5 q 10 , f 5 = q 2 cos2φ ,
d= c 4 .

Metrics