Abstract

We demonstrate passively mode-locked Yb3+-doped glass waveguide lasers in a quasi-monolithic configuration with a maximum pulse repetition frequency up to 15.2 GHz. A semiconductor saturable absorber mirror (SESAM) is used to achieve stable mode-locking around 1050 nm with pulse durations as short as 811 fs and an average power up to 27 mW. Different waveguide samples are also employed to deliver pulses with repetition rates of 4.9 GHz, 10.4 GHz and 12 GHz with an average power of 32 mW, 60 mW and 45 mW, respectively. The group velocity dispersion control in the cavity is provided by changing the gap between the SESAM and the waveguide end-face to facilitate a soliton mode-locking regime.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-W. Chu, T.-M. Liu, C.-K. Sun, C.-Y. Lin, and H.-J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express11(8), 933–938 (2003).
    [CrossRef] [PubMed]
  2. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
    [CrossRef] [PubMed]
  3. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445(7128), 627–630 (2007).
    [CrossRef] [PubMed]
  4. Y. J. Chai, C. G. Leburn, A. A. Lagatsky, C. T. A. Brown, R. V. Penty, I. H. White, and W. Sibbett, “1.36Tb/s spectral slicing source based on a Cr:YAG femtosecond laser,” J. Lightwave Technol.23(3), 1319–1324 (2005).
    [CrossRef]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000).
    [CrossRef] [PubMed]
  6. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008).
    [CrossRef] [PubMed]
  7. C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys.6, 175 (2004).
    [CrossRef]
  8. K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.22(14), 1021–1023 (2010).
    [CrossRef]
  9. J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, and A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at 1.55 µm,” Opt. Express16(22), 17706–17713 (2008).
    [CrossRef] [PubMed]
  10. S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, “Self-stabilization of an actively mode-locked semiconductor-based fiber-ring laser for ultralow jitter,” IEEE Photon. Technol. Lett.19(7), 498–500 (2007).
    [CrossRef]
  11. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B14(1), 144–154 (1997).
    [CrossRef]
  12. A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010).
    [CrossRef]
  13. Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett.10(1), 015803 (2013).
    [CrossRef]
  14. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
    [CrossRef]
  15. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt.49(29), 5577–5582 (2010).
    [CrossRef] [PubMed]
  16. J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kaertner, “Fundamentally mode-locked 3 GHz femtosecond erbium fiber laser,” in Proc. 16th Int. Conf. Ultrafast Phenomena XIV, Stresa, Lago Maggiore, Italy, 2008.
  17. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005).
    [CrossRef]
  18. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011).
    [CrossRef] [PubMed]
  19. H. W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett.37(17), 3522–3524 (2012).
    [CrossRef] [PubMed]
  20. H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kartner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009).
    [CrossRef]
  21. A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett.37(21), 4416–4418 (2012).
    [CrossRef] [PubMed]
  22. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21(7), 7943–7950 (2013).
    [CrossRef] [PubMed]
  23. D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
    [CrossRef]
  24. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999).
    [CrossRef]
  25. J. Kuhl and J. Heppner, “Compression of femtosecond optical pulses with dielectric multilayer interferometers,” IEEE Trans. Quantum Electron.22(1), 182–185 (1986).
    [CrossRef]
  26. L. Krainer, R. Paschotta, M. Moser, and U. Keller, “77 GHz soliton modelocked Nd:YVO4 laser,” Electron. Lett.36(22), 1846–1848 (2000).
    [CrossRef]

2013

2012

2011

2010

H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt.49(29), 5577–5582 (2010).
[CrossRef] [PubMed]

A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010).
[CrossRef]

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.22(14), 1021–1023 (2010).
[CrossRef]

2009

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kartner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009).
[CrossRef]

2008

J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, and A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at 1.55 µm,” Opt. Express16(22), 17706–17713 (2008).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

2007

S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, “Self-stabilization of an actively mode-locked semiconductor-based fiber-ring laser for ultralow jitter,” IEEE Photon. Technol. Lett.19(7), 498–500 (2007).
[CrossRef]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445(7128), 627–630 (2007).
[CrossRef] [PubMed]

2005

Y. J. Chai, C. G. Leburn, A. A. Lagatsky, C. T. A. Brown, R. V. Penty, I. H. White, and W. Sibbett, “1.36Tb/s spectral slicing source based on a Cr:YAG femtosecond laser,” J. Lightwave Technol.23(3), 1319–1324 (2005).
[CrossRef]

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005).
[CrossRef]

2004

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys.6, 175 (2004).
[CrossRef]

2003

2002

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

2000

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000).
[CrossRef] [PubMed]

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

L. Krainer, R. Paschotta, M. Moser, and U. Keller, “77 GHz soliton modelocked Nd:YVO4 laser,” Electron. Lett.36(22), 1846–1848 (2000).
[CrossRef]

1999

1997

1986

J. Kuhl and J. Heppner, “Compression of femtosecond optical pulses with dielectric multilayer interferometers,” IEEE Trans. Quantum Electron.22(1), 182–185 (1986).
[CrossRef]

Agate, M. B.

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys.6, 175 (2004).
[CrossRef]

Akrout, A.

Apostolopoulos, V.

A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010).
[CrossRef]

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Beecher, S. J.

Beere, H.

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.22(14), 1021–1023 (2010).
[CrossRef]

Beere, H. E.

A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010).
[CrossRef]

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Brown, C. T. A.

Brown, G.

Byun, H.

H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt.49(29), 5577–5582 (2010).
[CrossRef] [PubMed]

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kartner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009).
[CrossRef]

Cataluna, M. A.

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys.6, 175 (2004).
[CrossRef]

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Chai, Y. J.

Chang, G.

Chen, H. W.

Chen, Y. F.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett.10(1), 015803 (2013).
[CrossRef]

Choudhary, A.

Chu, S.-W.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Delfyett, P. J.

S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, “Self-stabilization of an actively mode-locked semiconductor-based fiber-ring laser for ultralow jitter,” IEEE Photon. Technol. Lett.19(7), 498–500 (2007).
[CrossRef]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445(7128), 627–630 (2007).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Duan, G. H.

Farrer, I.

A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010).
[CrossRef]

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Ferrari, A. C.

Fontaine, N.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

Frolov, S.

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kartner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009).
[CrossRef]

Funk, D. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

Gee, S.

S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, “Self-stabilization of an actively mode-locked semiconductor-based fiber-ring laser for ultralow jitter,” IEEE Photon. Technol. Lett.19(7), 498–500 (2007).
[CrossRef]

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Gray, S.

Grudinin, A. B.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Hanjani, A.

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kartner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009).
[CrossRef]

Hasan, T.

Hayden, J. S.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

Heppner, J.

J. Kuhl and J. Heppner, “Compression of femtosecond optical pulses with dielectric multilayer interferometers,” IEEE Trans. Quantum Electron.22(1), 182–185 (1986).
[CrossRef]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Honninger, C.

Houde-Walter, S. N.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

Hsu, K.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005).
[CrossRef]

Huang, G. W.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett.10(1), 015803 (2013).
[CrossRef]

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Inoue, Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005).
[CrossRef]

Ippen, E. P.

H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt.49(29), 5577–5582 (2010).
[CrossRef] [PubMed]

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kartner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009).
[CrossRef]

Jablonski, M.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005).
[CrossRef]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Juodawlkis, P. W.

S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, “Self-stabilization of an actively mode-locked semiconductor-based fiber-ring laser for ultralow jitter,” IEEE Photon. Technol. Lett.19(7), 498–500 (2007).
[CrossRef]

Kannan, P.

Kar, A. K.

Kartner, F. X.

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kartner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009).
[CrossRef]

Kärtner, F. X.

Keller, U.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

L. Krainer, R. Paschotta, M. Moser, and U. Keller, “77 GHz soliton modelocked Nd:YVO4 laser,” Electron. Lett.36(22), 1846–1848 (2000).
[CrossRef]

C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999).
[CrossRef]

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Kolodziejski, L. A.

Kotake, T.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005).
[CrossRef]

Krainer, L.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

L. Krainer, R. Paschotta, M. Moser, and U. Keller, “77 GHz soliton modelocked Nd:YVO4 laser,” Electron. Lett.36(22), 1846–1848 (2000).
[CrossRef]

Kuhl, J.

J. Kuhl and J. Heppner, “Compression of femtosecond optical pulses with dielectric multilayer interferometers,” IEEE Trans. Quantum Electron.22(1), 182–185 (1986).
[CrossRef]

Lagatsky, A. A.

Leburn, C. G.

Y. J. Chai, C. G. Leburn, A. A. Lagatsky, C. T. A. Brown, R. V. Penty, I. H. White, and W. Sibbett, “1.36Tb/s spectral slicing source based on a Cr:YAG femtosecond laser,” J. Lightwave Technol.23(3), 1319–1324 (2005).
[CrossRef]

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys.6, 175 (2004).
[CrossRef]

Lecomte, S.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

Lelarge, F.

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Liang, H. C.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett.10(1), 015803 (2013).
[CrossRef]

Lidorikis, E.

Lin, C.-Y.

Liu, T.-M.

Liu, W.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

Martinez, A.

Mary, R.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Merghem, K.

Milana, S.

Morier-Genoud, F.

Moser, M.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

L. Krainer, R. Paschotta, M. Moser, and U. Keller, “77 GHz soliton modelocked Nd:YVO4 laser,” Electron. Lett.36(22), 1846–1848 (2000).
[CrossRef]

C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999).
[CrossRef]

Motamedi, A.

Obarski, G. E.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

Ohara, S.

Ozharar, S.

S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, “Self-stabilization of an actively mode-locked semiconductor-based fiber-ring laser for ultralow jitter,” IEEE Photon. Technol. Lett.19(7), 498–500 (2007).
[CrossRef]

Paschotta, R.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

L. Krainer, R. Paschotta, M. Moser, and U. Keller, “77 GHz soliton modelocked Nd:YVO4 laser,” Electron. Lett.36(22), 1846–1848 (2000).
[CrossRef]

C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B16(1), 46–56 (1999).
[CrossRef]

Penty, R. V.

Perevedentsev, A.

A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010).
[CrossRef]

Peskin, A. P.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

Peters, P. M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

Petrich, G. S.

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Plant, J. J.

S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, “Self-stabilization of an actively mode-locked semiconductor-based fiber-ring laser for ultralow jitter,” IEEE Photon. Technol. Lett.19(7), 498–500 (2007).
[CrossRef]

Popa, D.

Pudo, D.

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kartner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009).
[CrossRef]

Quarterman, A. H.

A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010).
[CrossRef]

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.22(14), 1021–1023 (2010).
[CrossRef]

Quinlan, F.

S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, “Self-stabilization of an actively mode-locked semiconductor-based fiber-ring laser for ultralow jitter,” IEEE Photon. Technol. Lett.19(7), 498–500 (2007).
[CrossRef]

Rafailov, E. U.

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys.6, 175 (2004).
[CrossRef]

Ramdane, A.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Ritchie, D. A.

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.22(14), 1021–1023 (2010).
[CrossRef]

A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010).
[CrossRef]

Sander, M. Y.

Sanford, N. A.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Set, S. Y.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005).
[CrossRef]

Shen, A.

Shen, H.

Shepherd, D. P.

Shmulovich, J.

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kartner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009).
[CrossRef]

Sibbett, W.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Su, K. W.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett.10(1), 015803 (2013).
[CrossRef]

Sun, C.-K.

Sun, Z.

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Tanaka, D.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005).
[CrossRef]

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Torrisi, F.

Tourrenc, J. P.

Tropper, A. C.

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.22(14), 1021–1023 (2010).
[CrossRef]

A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010).
[CrossRef]

Tsai, H.-J.

Veasey, D. L.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Weingarten, K. J.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

White, I. H.

Wilcox, K. G.

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.22(14), 1021–1023 (2010).
[CrossRef]

A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010).
[CrossRef]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Xu, S.

Yaguchi, H.

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005).
[CrossRef]

Yamashita, S.

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express19(7), 6155–6163 (2011).
[CrossRef] [PubMed]

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005).
[CrossRef]

Yang, Z.

Young, M.

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

Zhuang, W. Z.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett.10(1), 015803 (2013).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. H. Quarterman, A. Perevedentsev, K. G. Wilcox, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “Passively harmonically mode-locked vertical-external-cavity surface-emitting laser emitting 1.1 ps pulses at 147 GHz repetition rate,” Appl. Phys. Lett.97(25), 251101 (2010).
[CrossRef]

Electron. Lett.

L. Krainer, R. Paschotta, M. Moser, and U. Keller, “77 GHz soliton modelocked Nd:YVO4 laser,” Electron. Lett.36(22), 1846–1848 (2000).
[CrossRef]

IEEE J. Quantum Electron.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, “Self-stabilization of an actively mode-locked semiconductor-based fiber-ring laser for ultralow jitter,” IEEE Photon. Technol. Lett.19(7), 498–500 (2007).
[CrossRef]

K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett.22(14), 1021–1023 (2010).
[CrossRef]

S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry-Perot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett.17(4), 750–752 (2005).
[CrossRef]

H. Byun, D. Pudo, S. Frolov, A. Hanjani, J. Shmulovich, E. P. Ippen, and F. X. Kartner, “Integrated low-jitter 400-MHz femtosecond waveguide laser,” IEEE Photon. Technol. Lett.21(12), 763–765 (2009).
[CrossRef]

IEEE Trans. Quantum Electron.

J. Kuhl and J. Heppner, “Compression of femtosecond optical pulses with dielectric multilayer interferometers,” IEEE Trans. Quantum Electron.22(1), 182–185 (1986).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P. Peskin, W. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids263, 369–381 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

Y. F. Chen, W. Z. Zhuang, H. C. Liang, G. W. Huang, and K. W. Su, “High-power subpicosecond harmonically mode-locked Yb:YAG laser with pulse repetition rate up to 240 GHz,” Laser Phys. Lett.10(1), 015803 (2013).
[CrossRef]

Nature

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445(7128), 627–630 (2007).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

New J. Phys.

C. T. A. Brown, M. A. Cataluna, A. A. Lagatsky, E. U. Rafailov, M. B. Agate, C. G. Leburn, and W. Sibbett, “Compact laser-diode-based femtosecond sources,” New J. Phys.6, 175 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Science

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Other

J. Chen, J. W. Sickler, H. Byun, E. P. Ippen, S. Jiang, and F. X. Kaertner, “Fundamentally mode-locked 3 GHz femtosecond erbium fiber laser,” in Proc. 16th Int. Conf. Ultrafast Phenomena XIV, Stresa, Lago Maggiore, Italy, 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

(a) Output power vs. incident pump power for the 20-mm-long sample. CW denotes continuous wave operation, QML- Q-switched mode-locking and ML- mode-locking; (b) Image of the near-field laser mode on a CCD camera; (c,d) M2 measurements along x and y directions with fit (red lines) to the experimental data.

Fig. 3
Fig. 3

(a). RF spectra taken with a 10 MHz span and a resolution bandwidth of 10 kHz (b) autocorrelation trace, Blue-experimental data, black-sech2 fit and (c) optical spectrum measured for the 20-mm-long waveguide laser.

Fig. 4
Fig. 4

RF spectra taken with a 10 MHz span and a resolution bandwidth of 10 kHz (b) autocorrelation trace, Blue-experimental data, black-sech2 fit and (c) optical spectrum measured for the 9.4-mm-long waveguide laser.

Fig. 5
Fig. 5

RF spectra taken with a 10 MHz span and a resolution bandwidth of 10 kHz (b) autocorrelation trace, Blue-experimental data, black-sech2 fit and (c) optical spectrum measured f or the 8-mm-long waveguide laser.

Fig. 6
Fig. 6

RF spectra taken with a 10 MHz span and a resolution bandwidth of 10 kHz (b) autocorrelation trace, Blue-experimental data, black-sech2 fit and (c) optical spectrum measured for the 6.5-mm-long waveguide laser.

Metrics