Abstract

We have investigated two novel concepts for the design of transmission lines in travelling wave Mach-Zehnder interferometer based Silicon Photonics depletion modulators overcoming the analog bandwidth limitations arising from cross-talk between signal lines in push-pull modulators and reducing the linear losses of the transmission lines. We experimentally validate the concepts and demonstrate an E/O −3 dBe bandwidth of 16 GHz with a 4V drive voltage (in dual drive configuration) and 8.8 dB on-chip insertion losses. Significant bandwidth improvements result from suppression of cross-talk. An additional bandwidth enhancement of ~11% results from a reduction of resistive transmission line losses. Frequency dependent loss models for loaded transmission lines and E/O bandwidth modeling are fully verified.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  2. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express17(7), 5118–5124 (2009).
    [CrossRef] [PubMed]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature4, 518–526 (2010).
  4. D. Kucharski, D. Guckenberg, G. Masini, S. Abdalla, J. Witzens, and S. Sahni, “10Gb/s 15mW Optical Receiver with Integrated Germanium Photodetector and Hybrid Inductor Peaking in 0.13μm SOI CMOS Technology,” Proc. 2010 IEEE Intern. Sol.-State Circ. Conf. (ISSCC), 360–361 (2010).
  5. J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett.46(3), 234–236 (2010).
    [CrossRef]
  6. G. Masini, G. Capellini, J. Witzens, and C. Gunn, “High-speed, monolithic CMOS receivers at 1550 nm with Ge on Si waveguide photodetectors,” Proc. Lasers and Electro-Optics Soc. (LEOS), 848–849 (2007).
  7. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express17(8), 6252–6257 (2009).
    [CrossRef] [PubMed]
  8. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  9. G.-R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Käertner, “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express16(8), 5218–5226 (2008).
    [CrossRef] [PubMed]
  10. J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).
  11. T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
    [CrossRef]
  12. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
    [CrossRef] [PubMed]
  13. H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. L. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012).
    [CrossRef] [PubMed]
  14. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010).
    [CrossRef] [PubMed]
  15. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express16(6), 4177–4191 (2008).
    [CrossRef] [PubMed]
  16. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
    [CrossRef] [PubMed]
  17. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express19(18), 17212–17219 (2011).
    [CrossRef] [PubMed]
  18. D. Kucharski, B. Analui, L. C. Gunn, R. Koumans, T. Pinguet, and T. Sadagopan, “Distributed amplifier optical modulator,” U.S. Patent 7 899 276 (2011).
  19. J. Witzens, B. Analui, S. Mirsaidi, T. Sadagopan, B. Welch, and A. Narasimha, “Integrated control system for laser and Mach-Zehnder interferometer,” U.S. Patent 7 916 377 (2011).
  20. A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008).
    [CrossRef]
  21. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express18(16), 16902–16928 (2010).
    [CrossRef] [PubMed]
  22. D. G. Cunningham, “Traveling wave optical modulator,” U.S. Patent 5 091 981 (1992).
  23. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
    [CrossRef]
  24. F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni, and F. Svelto, “Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations,” J. Solid-State Circ.44(9), 2605–2615 (2009).
    [CrossRef]

2012 (3)

2011 (1)

2010 (5)

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express18(16), 16902–16928 (2010).
[CrossRef] [PubMed]

T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature4, 518–526 (2010).

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett.46(3), 234–236 (2010).
[CrossRef]

2009 (3)

2008 (3)

2007 (1)

2006 (1)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Absil, P.

Alic, N.

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

Alloatti, L.

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Andreani, L. C.

Ang, K.

T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Arcioni, P.

F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni, and F. Svelto, “Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations,” J. Solid-State Circ.44(9), 2605–2615 (2009).
[CrossRef]

Asghari, M.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett.46(3), 234–236 (2010).
[CrossRef]

Ayazi, A.

Baehr-Jones, T.

Baets, R.

Basak, J.

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008).
[CrossRef]

Benight, S.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Bogaerts, W.

Bojko, R.

Bolten, J.

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Brosi, J. M.

Cassan, E.

Chetrit, Y.

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008).
[CrossRef]

Chmielak, B.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Cohen, R.

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008).
[CrossRef]

Crozat, P.

Dalton, L.

Damlencourt, J.-F.

Ding, R.

Doylend, J. K.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett.46(3), 234–236 (2010).
[CrossRef]

Dumon, P.

Eyssa, W.

F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni, and F. Svelto, “Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations,” J. Solid-State Circ.44(9), 2605–2615 (2009).
[CrossRef]

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Fang, Q.

T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Fedeli, J. M.

Fédéli, J.-M.

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

Fournier, M.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Freude, W.

Gan, F.

Gardens, F. Y.

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature4, 518–526 (2010).

Geis, M. W.

Gondarenko, A.

Green, W. M. J.

Grein, M. E.

Gwilliam, R. M.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett.46(3), 234–236 (2010).
[CrossRef]

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Harris, N. C.

Hillerkuss, D.

Hochberg, M.

Hu, Y.

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

Huang, S.

Ippen, E. P.

Izhaky, N.

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008).
[CrossRef]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Jen, A.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Käertner, F. X.

Knights, A. P.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett.46(3), 234–236 (2010).
[CrossRef]

Komorowska, K.

Koos, C.

Korn, D.

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Kuo, B. P. P.

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

Kurz, H.

Kwong, D.

T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Laval, S.

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Lecunff, Y.

Lee, P.

Lennon, D. M.

Leuthold, J.

Li, Y. L.

Liao, L.

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lim, A. E.

Liow, T. Y.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Lipson, M.

Liu, A.

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liu, Y.

Lo, G.

T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Lo, G. Q.

Luff, B. J.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett.46(3), 234–236 (2010).
[CrossRef]

Luo, J.

Lyszczarz, T. M.

Manipatruni, S.

Marris-Morini, D.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature4, 518–526 (2010).

Mashanovich, G. Z.

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

Matheisen, C.

Merget, F.

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Myslivets, E.

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

Nagel, M.

Nguyen, H.

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Orcutt, J. S.

Osmond, J.

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Paniccia, M.

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Pantouvaki, M.

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Pinguet, T.

Poitras, C. B.

Preston, K.

Radic, S.

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

Reed, G.

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature4, 518–526 (2010).

Repossi, M.

F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni, and F. Svelto, “Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations,” J. Solid-State Circ.44(9), 2605–2615 (2009).
[CrossRef]

Ripperda, C.

Rooks, M. J.

Rubin, D.

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Schulein, R. T.

Sekaric, L.

Shafiiha, R.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett.46(3), 234–236 (2010).
[CrossRef]

Song, J.

T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Spector, S. J.

Streshinsky, M.

Sullivan, P.

Svelto, F.

F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni, and F. Svelto, “Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations,” J. Solid-State Circ.44(9), 2605–2615 (2009).
[CrossRef]

Teo, S. H. G.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature4, 518–526 (2010).

Thomson, J.

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

Van Campenhout, J.

Vecchi, F.

F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni, and F. Svelto, “Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations,” J. Solid-State Circ.44(9), 2605–2615 (2009).
[CrossRef]

Verheyen, P.

Vivien, L.

Vlasov, Y. A.

Wahlbrink, T.

Waldow, M.

Witzens, J.

Xiong, Y.

T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Yoon, J. U.

Yu, H.

Yu, M.

T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Zhang, Y.

Zhou, G.-R.

Zlatanovic, S.

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Electron. Lett. (1)

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” Electron. Lett.46(3), 234–236 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Liow, K. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Lo, and D. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Thomson, F. Y. Gardens, J.-M. Fédéli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett.24(4), 234–236 (2012).

J. Solid-State Circ. (1)

F. Vecchi, M. Repossi, W. Eyssa, P. Arcioni, and F. Svelto, “Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations,” J. Solid-State Circ.44(9), 2605–2615 (2009).
[CrossRef]

Nature (3)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature441(7090), 199–202 (2006).
[CrossRef] [PubMed]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature4, 518–526 (2010).

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Opt. Express (10)

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express16(6), 4177–4191 (2008).
[CrossRef] [PubMed]

G.-R. Zhou, M. W. Geis, S. J. Spector, F. Gan, M. E. Grein, R. T. Schulein, J. S. Orcutt, J. U. Yoon, D. M. Lennon, T. M. Lyszczarz, E. P. Ippen, and F. X. Käertner, “Effect of carrier lifetime on forward-biased silicon Mach-Zehnder modulators,” Opt. Express16(8), 5218–5226 (2008).
[CrossRef] [PubMed]

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express17(7), 5118–5124 (2009).
[CrossRef] [PubMed]

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010).
[CrossRef] [PubMed]

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express18(16), 16902–16928 (2010).
[CrossRef] [PubMed]

B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express19(18), 17212–17219 (2011).
[CrossRef] [PubMed]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. L. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol.23(6), 064001 (2008).
[CrossRef]

Other (5)

D. G. Cunningham, “Traveling wave optical modulator,” U.S. Patent 5 091 981 (1992).

D. Kucharski, D. Guckenberg, G. Masini, S. Abdalla, J. Witzens, and S. Sahni, “10Gb/s 15mW Optical Receiver with Integrated Germanium Photodetector and Hybrid Inductor Peaking in 0.13μm SOI CMOS Technology,” Proc. 2010 IEEE Intern. Sol.-State Circ. Conf. (ISSCC), 360–361 (2010).

G. Masini, G. Capellini, J. Witzens, and C. Gunn, “High-speed, monolithic CMOS receivers at 1550 nm with Ge on Si waveguide photodetectors,” Proc. Lasers and Electro-Optics Soc. (LEOS), 848–849 (2007).

D. Kucharski, B. Analui, L. C. Gunn, R. Koumans, T. Pinguet, and T. Sadagopan, “Distributed amplifier optical modulator,” U.S. Patent 7 899 276 (2011).

J. Witzens, B. Analui, S. Mirsaidi, T. Sadagopan, B. Welch, and A. Narasimha, “Integrated control system for laser and Mach-Zehnder interferometer,” U.S. Patent 7 916 377 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Microscope image of the electro-optic modulator.

Fig. 2
Fig. 2

Top view (a) and cross-sectional schematic (b) of the investigated modulators (not to scale).

Fig. 3
Fig. 3

Phase shifts induced in the top (red curve) and bottom (blue curve) MZI arms as a function of applied voltages. The inset shows exemplary transmission spectra for several applied voltages (see legend).

Fig. 4
Fig. 4

Electro-optical transmission coefficient S21 as a function of the RF-frequency. The experimental data is compared to models calibrated with experimental data taking into account transmission line losses and phase mismatch.

Fig. 5
Fig. 5

Signals for (a) the conventional and (b) the advanced driving scheme.

Fig. 6
Fig. 6

(a) Transmission coefficients S21,RF (blue trace, transmission through signal line 1) and S31,RF (red trace, cross-talk to signal line 2) measured at the end of the transmission line for an RF signal applied only to signal line 1, corresponding to the cross-talk occurring in the conventional driving scheme. Dashed curves are measured and continuous curves are modeled. The black curve shows the measured transmission coefficient S21,RF* of the symmetric mode, for comparison, corresponding to RF losses in the advanced driving signal scheme. (b) Modeled S21,RF and S31,RF for an MZI modulator with a doubled, 8 mm length. Here too, the blue line is the RF transmission and the red line shows the cross-talk. (c-e) Super-modes supported by the GSSG-transmission line (Ey). The symmetric mode has an anti-symmetric Ey field, but symmetric voltages.

Fig. 7
Fig. 7

(a) conventional design of a loaded transmission line, (b) advanced design with interleaved electrode extensions (c) lumped element representation of the current flow. The microscope image shows a detail of the electrode extensions in the real modulator. The dark boxes are the metal electrode extensions; the colored areas represent the different doping regions. Grey areas are signal and ground line, respectively.

Fig. 8
Fig. 8

Transmission line attenuation for the modulator with and without electrode extensions. The y-axis corresponds to α rather than α in order to make the trend predicted by Eq. (1) apparent by a linear progression. Continuous lines are fitted according to Eq. (1).

Fig. 9
Fig. 9

TDR measurement of S11 for conventional (blue curve) and advanced transmission line design with electrode extensions (green curve).

Fig. 10
Fig. 10

Optical transmission coefficient S21 of the conventional baseline modulator (blue) and a modulator with an advanced transmission line design with interleaved electrode extensions (green). Solid lines are models based on experimentally extracted parameters.

Tables (1)

Tables Icon

Table 1 Comparison of measured and modeled bandwidths for the modulator with and without electrode extensions

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α(f)= α 0 f + R WG ' (2πf C WG ' ) 2 Z TL = α 0 f + α 1 f 2 ,
L eff = 0 L e α/2x dx
V sym = [ 0 5.26 5.26 0 ], I sym =[ 0.096 0.096 0.096 0.096 ] V asym1 =[ 2.89 1.59 1.59 2.89 ],I asym1 =[ 0.109 0.112 0.112 0.109 ], V asym2 =[ 3.72 3.59 3.59 3.72 ], I asym2 =[ 0.058 0.079 0.079 0.058 ]
V in,0 =[ 0 1 0 0 ]= [ 0 1/2 1/2 0 ] AC + [ 0 1/2 1/2 0 ] DC , V in,1 =[ 0 0 1 0 ]= [ 0 1/2 1/2 0 ] AC + [ 0 1/2 1/2 0 ] DC
V in,0 =[ 0 1 0 0 ]= [ 0 1/2 1/2 0 ] AC + [ 0 1/2 1/2 0 ] DC V in,1 =[ 0 0 1 0 ]= [ 0 1/2 1/2 0 ] AC + [ 0 1/2 1/2 0 ] DC ,
V in,0 =[ 0 1 1 1 ]= [ 0 1/2 1/2 0 ] AC + [ 0 1/2 1/2 1 ] DC V in,1 =[ 0 0 0 1 ]= [ 0 1/2 1/2 0 ] AC + [ 0 1/2 1/2 1 ] DC

Metrics