Abstract

A speckle noise suppression method in digital holography is proposed by the angular diversity with a phase-only spatial light modulator (SLM). The minimal angular difference of illumination beams is quantitatively analyzed to ensure the noncorrelation of any two speckle patterns, and then the phase-only SLM is employed to generate a series of tilted illumination beams. Comparing with the typical methods, the tilted illumination beams are controlled dynamically and accurately, which makes it possible to record a large number of holograms. Finally, using an image-plane digital holographic system, 117 holograms are recorded respectively, and the synthesized reconstructed images are obtained with the greatly suppressed speckle noise which is in good agreement with the theoretical results. The experimental results demonstrate the effectiveness, repeatability, and practicability of the proposed approach.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts, 2006).
  2. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express14(11), 4736–4745 (2006).
    [CrossRef] [PubMed]
  3. Z. Tong, M. N. Akram, and X. Chen, “Speckle reduction using orthogonal arrays in laser projectors,” Appl. Opt.49(33), 6425–6429 (2010).
    [CrossRef] [PubMed]
  4. C. López-Martínez and E. Pottier, “Coherence estimation in synthetic aperture radar data based on speckle noise modeling,” Appl. Opt.46(4), 544–558 (2007).
    [CrossRef] [PubMed]
  5. H. Rabbani, M. Vafadust, P. Abolmaesumi, and S. Gazor, “Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors,” IEEE Trans. Biomed. Eng.55(9), 2152–2160 (2008).
    [CrossRef] [PubMed]
  6. D. Claus, M. Fritzsche, D. Iliescu, B. Timmerman, and P. Bryanston-Cross, “High-resolution digital holography utilized by the subpixel sampling method,” Appl. Opt.50(24), 4711–4719 (2011).
    [CrossRef] [PubMed]
  7. A. Uzan, Y. Rivenson, and A. Stern, “Speckle denoising in digital holography by nonlocal means filtering,” Appl. Opt.52(1), A195–A200 (2013).
    [CrossRef] [PubMed]
  8. A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng.46(1), 42–47 (2008).
    [CrossRef]
  9. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A24(6), 1617–1622 (2007).
    [CrossRef] [PubMed]
  10. V. Bianco, M. Paturzo, P. Memmolo, A. Finizio, P. Ferraro, and B. Javidi, “Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography,” Opt. Lett.38(5), 619–621 (2013).
    [CrossRef] [PubMed]
  11. S. Lowenthal and D. Joyeux, “Speckle removal by slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am.61(7), 847–851 (1971).
    [CrossRef]
  12. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt.49(23), 4385–4391 (2010).
    [CrossRef] [PubMed]
  13. M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt.49(17), 3297–3304 (2010).
    [CrossRef] [PubMed]
  14. C. Remmersmann, S. Stürwald, B. Kemper, P. Langehanenberg, and G. von Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt.48(8), 1463–1472 (2009).
    [CrossRef] [PubMed]
  15. P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt.57(9), 709–717 (2010).
    [CrossRef]
  16. Y. S. Kim, T. Kim, S. S. Woo, H. Kang, T. C. Poon, and C. Zhou, “Speckle-free digital holographic recording of a diffusely reflecting object,” Opt. Express21(7), 8183–8189 (2013).
    [CrossRef] [PubMed]
  17. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt.47(19), D38–D43 (2008).
    [CrossRef] [PubMed]
  18. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express7(9), 305–310 (2000).
    [CrossRef] [PubMed]
  19. B. Javidi, P. Ferraro, S. H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett.30(2), 144–146 (2005).
    [CrossRef] [PubMed]
  20. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett.8(7), 653–655 (2010).
    [CrossRef]
  21. W. Xiao, J. Zhang, L. Rong, F. Pan, S. Liu, F. Wang, and A. He, “Improvement of speckle noise suppression in digital holography by rotating linear polarization state,” Chin. Opt. Lett.9(6), 060901–060903 (2011).
    [CrossRef]
  22. F. Pan, W. Xiao, S. Liu, F. Wang, L. Rong, and R. Li, “Coherent noise reduction in digital holographic phase contrast microscopy by slightly shifting object,” Opt. Express19(5), 3862–3869 (2011).
    [CrossRef] [PubMed]
  23. F. Pan, W. Xiao, S. Liu, and L. Rong, “Coherent noise reduction in digital holographic microscopy by laterally shifting camera,” Opt. Commun.292, 68–72 (2013).
    [CrossRef]
  24. C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.46(11), 115801 (2007).
    [CrossRef]
  25. Y. K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express17(15), 12285–12292 (2009).
    [CrossRef] [PubMed]
  26. P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express17(7), 5473–5480 (2009).
    [CrossRef] [PubMed]
  27. T. Kozacki and R. Jóźwicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun.252(1–3), 188–201 (2005).
    [CrossRef]
  28. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt.39(23), 4070–4075 (2000).
    [CrossRef] [PubMed]
  29. M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, “Imaging live humans through smoke and flames using far-infrared digital holography,” Opt. Express21(5), 5379–5390 (2013).
    [CrossRef] [PubMed]
  30. A. Papoulis and S. U. Pillai, Probability, Random Vari-ables, and Stochastic Processes (4th edn.) (McGraw-Hill, 2002).

2013 (5)

2011 (3)

2010 (5)

2009 (3)

2008 (3)

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt.47(19), D38–D43 (2008).
[CrossRef] [PubMed]

H. Rabbani, M. Vafadust, P. Abolmaesumi, and S. Gazor, “Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors,” IEEE Trans. Biomed. Eng.55(9), 2152–2160 (2008).
[CrossRef] [PubMed]

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng.46(1), 42–47 (2008).
[CrossRef]

2007 (3)

2006 (1)

2005 (2)

B. Javidi, P. Ferraro, S. H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett.30(2), 144–146 (2005).
[CrossRef] [PubMed]

T. Kozacki and R. Jóźwicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun.252(1–3), 188–201 (2005).
[CrossRef]

2000 (2)

1971 (1)

Abolmaesumi, P.

H. Rabbani, M. Vafadust, P. Abolmaesumi, and S. Gazor, “Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors,” IEEE Trans. Biomed. Eng.55(9), 2152–2160 (2008).
[CrossRef] [PubMed]

Akram, M. N.

Alfieri, D.

Badizadegan, K.

Bally, G.

P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt.57(9), 709–717 (2010).
[CrossRef]

Bianco, V.

Bouma, B. E.

Bryanston-Cross, P.

Castro, A.

Chen, X.

Choi, W.

Claus, D.

Cuche, E.

Dasari, R.

De Nicola, S.

Depeursinge, C.

Desjardins, A. E.

Feld, M. S.

Feng, P.

Ferraro, P.

Finizio, A.

Frauel, Y.

Fritzsche, M.

Gazor, S.

H. Rabbani, M. Vafadust, P. Abolmaesumi, and S. Gazor, “Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors,” IEEE Trans. Biomed. Eng.55(9), 2152–2160 (2008).
[CrossRef] [PubMed]

Goodman, J. W.

He, A.

Hennelly, B. M.

Hong, S. H.

Iliescu, D.

Jaffery, Z. A.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng.46(1), 42–47 (2008).
[CrossRef]

Javidi, B.

Joyeux, D.

Józwicki, R.

T. Kozacki and R. Jóźwicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun.252(1–3), 188–201 (2005).
[CrossRef]

Kang, H.

Kang, X.

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.46(11), 115801 (2007).
[CrossRef]

Kartashov, V.

Kemper, B.

Kim, M. K.

Kim, T.

Kim, Y. S.

Kozacki, T.

T. Kozacki and R. Jóźwicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun.252(1–3), 188–201 (2005).
[CrossRef]

Kubota, S.

Langehanenberg, P.

Li, R.

Liu, S.

Locatelli, M.

López-Martínez, C.

Lowenthal, S.

Lu, R.

Marquet, P.

Maycock, J.

McDonald, J. B.

Memmolo, P.

Meucci, R.

Miccio, L.

Moinuddin,

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng.46(1), 42–47 (2008).
[CrossRef]

Naughton, T. J.

Nitanai, E.

Nomura, T.

Numata, T.

Okamura, M.

Ouyang, G.

Pan, F.

Park, Y. K.

Paturzo, M.

Pelagotti, A.

Pierattini, G.

Poggi, P.

Poon, T. C.

Pottier, E.

Pugliese, E.

Quan, C. G.

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.46(11), 115801 (2007).
[CrossRef]

Rabbani, H.

H. Rabbani, M. Vafadust, P. Abolmaesumi, and S. Gazor, “Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors,” IEEE Trans. Biomed. Eng.55(9), 2152–2160 (2008).
[CrossRef] [PubMed]

Remmersmann, C.

Rivenson, Y.

Rong, L.

Sharma, A.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng.46(1), 42–47 (2008).
[CrossRef]

Sheoran, G.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng.46(1), 42–47 (2008).
[CrossRef]

Stern, A.

Stürwald, S.

Tay, C. J.

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.46(11), 115801 (2007).
[CrossRef]

Tearney, G. J.

Timmerman, B.

Tong, Z.

Uzan, A.

Vafadust, M.

H. Rabbani, M. Vafadust, P. Abolmaesumi, and S. Gazor, “Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors,” IEEE Trans. Biomed. Eng.55(9), 2152–2160 (2008).
[CrossRef] [PubMed]

Vakoc, B. J.

von Bally, G.

Wang, F.

Wen, X.

Woo, S. S.

Xiao, W.

Yaqoob, Z.

Zhang, J.

Zhou, C.

Appl. Opt. (9)

Z. Tong, M. N. Akram, and X. Chen, “Speckle reduction using orthogonal arrays in laser projectors,” Appl. Opt.49(33), 6425–6429 (2010).
[CrossRef] [PubMed]

C. López-Martínez and E. Pottier, “Coherence estimation in synthetic aperture radar data based on speckle noise modeling,” Appl. Opt.46(4), 544–558 (2007).
[CrossRef] [PubMed]

D. Claus, M. Fritzsche, D. Iliescu, B. Timmerman, and P. Bryanston-Cross, “High-resolution digital holography utilized by the subpixel sampling method,” Appl. Opt.50(24), 4711–4719 (2011).
[CrossRef] [PubMed]

A. Uzan, Y. Rivenson, and A. Stern, “Speckle denoising in digital holography by nonlocal means filtering,” Appl. Opt.52(1), A195–A200 (2013).
[CrossRef] [PubMed]

S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt.49(23), 4385–4391 (2010).
[CrossRef] [PubMed]

M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt.49(17), 3297–3304 (2010).
[CrossRef] [PubMed]

C. Remmersmann, S. Stürwald, B. Kemper, P. Langehanenberg, and G. von Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt.48(8), 1463–1472 (2009).
[CrossRef] [PubMed]

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt.47(19), D38–D43 (2008).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt.39(23), 4070–4075 (2000).
[CrossRef] [PubMed]

Chin. Opt. Lett. (2)

IEEE Trans. Biomed. Eng. (1)

H. Rabbani, M. Vafadust, P. Abolmaesumi, and S. Gazor, “Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors,” IEEE Trans. Biomed. Eng.55(9), 2152–2160 (2008).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt.57(9), 709–717 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

T. Kozacki and R. Jóźwicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun.252(1–3), 188–201 (2005).
[CrossRef]

F. Pan, W. Xiao, S. Liu, and L. Rong, “Coherent noise reduction in digital holographic microscopy by laterally shifting camera,” Opt. Commun.292, 68–72 (2013).
[CrossRef]

Opt. Eng. (1)

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.46(11), 115801 (2007).
[CrossRef]

Opt. Express (7)

Opt. Lasers Eng. (1)

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng.46(1), 42–47 (2008).
[CrossRef]

Opt. Lett. (2)

Other (2)

J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts, 2006).

A. Papoulis and S. U. Pillai, Probability, Random Vari-ables, and Stochastic Processes (4th edn.) (McGraw-Hill, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Distribution of | μ A ( q 1 , q 2 ) | 2 versus θ i and Δ θ i .

Fig. 2
Fig. 2

Relationship between α i and θ i .

Fig. 3
Fig. 3

Relationship between α min and σ h of the object.

Fig. 4
Fig. 4

Schematic diagram of experimental setup. M1, M2: mirrors; NF: neutral density filter; PBS: polarization beam splitter; BE: optical beam expander; BS1, BS2: beam splitters; HWP: half wave plate; OBJ: object; L: lens; P: polarizer.

Fig. 5
Fig. 5

Grey images loaded onto the phase-only SLM.

Fig. 6
Fig. 6

Angle differences between the reference illumination beam and other 116 illumination beams.

Fig. 7
Fig. 7

Reconstructed images obtained by averaging of (a) 1 hologram; (b) 4 holograms; (c) 20 holograms; (d) 117 holograms.

Fig. 8
Fig. 8

Contrast value of the reconstructed intensity images versus the number of synthesized holograms.

Fig. 9
Fig. 9

A three-dimension diagram of the correlation coefficient between every two pairs of reconstructed images.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

q = q t + q z z = k o k i ,
| μ A ( q 1 , q 2 ) | 2 = | M h (Δ q z ) | 2 | Ψ(Δ q t ) | 2 ,
{ Δ q t =k[ sin( θ i +Δ θ i )sin θ i ] Δ q z =k[ cos( θ i +Δ θ i )cos θ i ] ,
| M h (Δ q z ) | 2 =exp( σ h 2 Δ q z 2 ),
| Ψ(Δ q t ) | 2 = [ 2 J 1 (0.5DΔ q t ) 0.5DΔ q t ] 2 ,
| μ A ( q 1 , q 2 ) | 2 =exp( σ h 2 Δ q z 2 ) [ 2 J 1 (0.5DΔ q t ) 0.5DΔ q t ] 2 .
F SLM (x,y)=exp[ ik(α x s +β y s ) ],
C= σ I I = I 2 I 2 I ,
c. c p,q = | i m j n [ I p (i,j) I p ][ I q (i,j) I q ] | { i m j n [ I p (i,j) I p ] 2 i m j n [ I q (i,j) I q ] 2 } 1/2 ,

Metrics