Abstract

Decelerating and stopping light is fundamental for optical processing, high performance sensor technologies and digital signal treatment, many of these applications relying on the ability of controlling the amplitude and phase of coherent light pulses. In this context, slow-light has been achieved by various methods, as coupling light into resonant media, Brillouin scattering in optical fibers, beam coupling in photorefractive and liquid crystal media or engineered dispersion in photonic crystals. Here, we present a different mechanism for slowing and storing light, which is based on photo-isomerization induced transparency of azo-dye molecules hosted in a chiral liquid crystal structure. Sharp spectral features of the medium absorption/dispersion, and the long population lifetime of the dye metastable state, enable the storage of light pulses with a significant retrieval after times much longer than the medium response time.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007).
    [CrossRef] [PubMed]
  2. F. Xia, L. Sekaric, and Y. Vlasov, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. Photonics1, 65–69 (2007).
    [CrossRef]
  3. R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast” light,” in Progress in Optics, edited by E. Wolf, (Elsevier Science, Amsterdam, 2002), Vol. 43, pp. 497–530.
    [CrossRef]
  4. R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photonics3, 103–106 (2009).
    [CrossRef]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
    [CrossRef]
  6. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
    [CrossRef] [PubMed]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
    [CrossRef] [PubMed]
  8. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express13, 9909–9915 (2005).
    [CrossRef] [PubMed]
  9. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318, 1748–1750 (2007).
    [CrossRef] [PubMed]
  10. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474 (2008).
    [CrossRef]
  11. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express13, 6092–6098 (2005).
    [CrossRef] [PubMed]
  12. E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett.91, 083902 (2003).
    [CrossRef] [PubMed]
  13. G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett.93, 133903 (2004).
    [CrossRef] [PubMed]
  14. S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett.100, 203603 (2008).
    [CrossRef] [PubMed]
  15. U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photonics Rev.4, 483–498 (2010).
    [CrossRef]
  16. D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783 (2001).
    [CrossRef] [PubMed]
  17. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409, 490–493 (2001).
    [CrossRef] [PubMed]
  18. T. Chanèliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature438, 833–836 (2005).
    [CrossRef] [PubMed]
  19. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev.6, 333–353 (2011).
    [CrossRef]
  20. U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103, 033003 (2009).
    [CrossRef] [PubMed]
  21. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2002).
    [CrossRef] [PubMed]
  22. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
    [CrossRef] [PubMed]
  23. M. F. Yanik and S. Fan, “Stopping Light All Optically,” Phys. Rev. Lett.92, 083901 (2004).
    [CrossRef] [PubMed]
  24. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471, 221–267 (2009).
    [CrossRef]
  25. F. Simoni, L. Lucchetti, D. Lucchetta, and O. Francescangeli, “On the origin of the huge nonlinear response of dye-doped liquid crystals,” Opt. Express9, 85–90 (2001).
    [CrossRef] [PubMed]
  26. I. Janossy and L. Szabados, “Photoisomerization of azo-dyes in nematic liquid crystals,” J. Nonlinear Opt. Phys. & Materials7, 539–551 (1998).
    [CrossRef]
  27. D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys.118, 3222 (2003).
    [CrossRef]
  28. P. G. de Gennes and J. Prost, J. The Physics of Liquid Crystals (Oxford Science Publications, 1993).
  29. G. Chilaya, Cholesteric liquid crystals: optics, electrooptics and photooptics in Chirality in Lliquid Crystals, Ch. Bahr and H. Kitzerow, eds (Springer Verlag, New York, 2000).
  30. T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268, 1873–1875 (1995).
    [CrossRef] [PubMed]
  31. D. Wei, A. Iljin, Z. Cai, S. Residori, and U. Bortolozzo, “Two-wave mixing in chiral dye-doped nematic liquid crystals,” Opt. Lett.37, 734–736 (2012).
    [CrossRef] [PubMed]
  32. D. Wei, S. Residori, and U. Bortolozzo, “Phase conjugation and slow light in dye-doped chiral nematics,” Opt. Lett.37, 4684–4686 (2012).
    [CrossRef] [PubMed]
  33. I. C. Khoo and T.-H. Lin, “Nonlinear optical grating diffraction in dye-doped blue-phase liquid crystals,” Opt. Lett.37, 3225–3227 (2012).
    [CrossRef] [PubMed]
  34. D. Wei, “Nonlinear optical studies of chiral liquid crystals,” PhD thesis, University of Nice-Sophia Antipolis (2012).

2012

2011

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev.6, 333–353 (2011).
[CrossRef]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
[CrossRef] [PubMed]

2010

U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photonics Rev.4, 483–498 (2010).
[CrossRef]

2009

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103, 033003 (2009).
[CrossRef] [PubMed]

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photonics3, 103–106 (2009).
[CrossRef]

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471, 221–267 (2009).
[CrossRef]

2008

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett.100, 203603 (2008).
[CrossRef] [PubMed]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474 (2008).
[CrossRef]

2007

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318, 1748–1750 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007).
[CrossRef] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. Photonics1, 65–69 (2007).
[CrossRef]

2005

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

T. Chanèliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature438, 833–836 (2005).
[CrossRef] [PubMed]

J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express13, 6092–6098 (2005).
[CrossRef] [PubMed]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express13, 9909–9915 (2005).
[CrossRef] [PubMed]

2004

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett.93, 133903 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping Light All Optically,” Phys. Rev. Lett.92, 083901 (2004).
[CrossRef] [PubMed]

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
[CrossRef] [PubMed]

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett.91, 083902 (2003).
[CrossRef] [PubMed]

D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys.118, 3222 (2003).
[CrossRef]

2002

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2002).
[CrossRef] [PubMed]

2001

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783 (2001).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409, 490–493 (2001).
[CrossRef] [PubMed]

F. Simoni, L. Lucchetti, D. Lucchetta, and O. Francescangeli, “On the origin of the huge nonlinear response of dye-doped liquid crystals,” Opt. Express9, 85–90 (2001).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

1998

I. Janossy and L. Szabados, “Photoisomerization of azo-dyes in nematic liquid crystals,” J. Nonlinear Opt. Phys. & Materials7, 539–551 (1998).
[CrossRef]

1995

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268, 1873–1875 (1995).
[CrossRef] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
[CrossRef] [PubMed]

Bloch, I.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103, 033003 (2009).
[CrossRef] [PubMed]

Bo, F.

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett.93, 133903 (2004).
[CrossRef] [PubMed]

Bortolozzo, U.

D. Wei, S. Residori, and U. Bortolozzo, “Phase conjugation and slow light in dye-doped chiral nematics,” Opt. Lett.37, 4684–4686 (2012).
[CrossRef] [PubMed]

D. Wei, A. Iljin, Z. Cai, S. Residori, and U. Bortolozzo, “Two-wave mixing in chiral dye-doped nematic liquid crystals,” Opt. Lett.37, 734–736 (2012).
[CrossRef] [PubMed]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photonics Rev.4, 483–498 (2010).
[CrossRef]

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett.100, 203603 (2008).
[CrossRef] [PubMed]

Boyd, R. W.

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318, 1748–1750 (2007).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast” light,” in Progress in Optics, edited by E. Wolf, (Elsevier Science, Amsterdam, 2002), Vol. 43, pp. 497–530.
[CrossRef]

Cai, Z.

Camacho, R. M.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photonics3, 103–106 (2009).
[CrossRef]

Chan, J.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
[CrossRef] [PubMed]

Chanèliere, T.

T. Chanèliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature438, 833–836 (2005).
[CrossRef] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
[CrossRef] [PubMed]

Chang-Hasnain, C. J.

Chilaya, G.

G. Chilaya, Cholesteric liquid crystals: optics, electrooptics and photooptics in Chirality in Lliquid Crystals, Ch. Bahr and H. Kitzerow, eds (Springer Verlag, New York, 2000).

Crankshaw, S.

Davidson, N.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103, 033003 (2009).
[CrossRef] [PubMed]

de Gennes, P. G.

P. G. de Gennes and J. Prost, J. The Physics of Liquid Crystals (Oxford Science Publications, 1993).

Dong, R.

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett.93, 133903 (2004).
[CrossRef] [PubMed]

Dudley, C. C.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
[CrossRef] [PubMed]

Fan, S.

M. F. Yanik and S. Fan, “Stopping Light All Optically,” Phys. Rev. Lett.92, 083901 (2004).
[CrossRef] [PubMed]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783 (2001).
[CrossRef] [PubMed]

Francescangeli, O.

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

Gaeta, A.

Gauthier, D. J.

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318, 1748–1750 (2007).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast” light,” in Progress in Optics, edited by E. Wolf, (Elsevier Science, Amsterdam, 2002), Vol. 43, pp. 497–530.
[CrossRef]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2002).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409, 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2002).
[CrossRef] [PubMed]

Hill, J. T.T

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
[CrossRef] [PubMed]

Howell, J. C.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photonics3, 103–106 (2009).
[CrossRef]

Huignard, J. P.

U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photonics Rev.4, 483–498 (2010).
[CrossRef]

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett.100, 203603 (2008).
[CrossRef] [PubMed]

Ikeda, T.

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268, 1873–1875 (1995).
[CrossRef] [PubMed]

Iljin, A.

Janossy, I.

D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys.118, 3222 (2003).
[CrossRef]

I. Janossy and L. Szabados, “Photoisomerization of azo-dyes in nematic liquid crystals,” J. Nonlinear Opt. Phys. & Materials7, 539–551 (1998).
[CrossRef]

Jenkins, S. D.

T. Chanèliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature438, 833–836 (2005).
[CrossRef] [PubMed]

Kennedy, T. A. B.

T. Chanèliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature438, 833–836 (2005).
[CrossRef] [PubMed]

Khoo, I. C.

Kuhr, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103, 033003 (2009).
[CrossRef] [PubMed]

Kuzmich, A.

T. Chanèliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature438, 833–836 (2005).
[CrossRef] [PubMed]

Lan, S.-Y.

T. Chanèliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature438, 833–836 (2005).
[CrossRef] [PubMed]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
[CrossRef] [PubMed]

Lin, Q.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
[CrossRef] [PubMed]

Lin, T.-H.

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409, 490–493 (2001).
[CrossRef] [PubMed]

Longdell, J. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

Lucchetta, D.

Lucchetti, L.

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783 (2001).
[CrossRef] [PubMed]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

Matsukevich, D. N.

T. Chanèliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature438, 833–836 (2005).
[CrossRef] [PubMed]

Mayer Alegre, T. P.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
[CrossRef] [PubMed]

Moewe, M.

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2002).
[CrossRef] [PubMed]

Novikova, I.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev.6, 333–353 (2011).
[CrossRef]

Odoulov, S.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett.91, 083902 (2003).
[CrossRef] [PubMed]

Okawachi, Y.

Painter, O.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
[CrossRef] [PubMed]

Palinginis, P.

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783 (2001).
[CrossRef] [PubMed]

Podivilov, E.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett.91, 083902 (2003).
[CrossRef] [PubMed]

Prost, J.

P. G. de Gennes and J. Prost, J. The Physics of Liquid Crystals (Oxford Science Publications, 1993).

Pugatch, R.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103, 033003 (2009).
[CrossRef] [PubMed]

Residori, S.

D. Wei, A. Iljin, Z. Cai, S. Residori, and U. Bortolozzo, “Two-wave mixing in chiral dye-doped nematic liquid crystals,” Opt. Lett.37, 734–736 (2012).
[CrossRef] [PubMed]

D. Wei, S. Residori, and U. Bortolozzo, “Phase conjugation and slow light in dye-doped chiral nematics,” Opt. Lett.37, 4684–4686 (2012).
[CrossRef] [PubMed]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photonics Rev.4, 483–498 (2010).
[CrossRef]

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett.100, 203603 (2008).
[CrossRef] [PubMed]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
[CrossRef] [PubMed]

Schnorrberger, U.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103, 033003 (2009).
[CrossRef] [PubMed]

Sedgwick, F.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. Photonics1, 65–69 (2007).
[CrossRef]

Sellars, M. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2002).
[CrossRef] [PubMed]

Sharping, J.

Shi, Z.

Shumelyuk, A.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett.91, 083902 (2003).
[CrossRef] [PubMed]

Simoni, F.

Statman, D.

D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys.118, 3222 (2003).
[CrossRef]

Sturman, B.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett.91, 083902 (2003).
[CrossRef] [PubMed]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2002).
[CrossRef] [PubMed]

Szabados, L.

I. Janossy and L. Szabados, “Photoisomerization of azo-dyes in nematic liquid crystals,” J. Nonlinear Opt. Phys. & Materials7, 539–551 (1998).
[CrossRef]

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474 (2008).
[CrossRef]

Thompson, J. D.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103, 033003 (2009).
[CrossRef] [PubMed]

Trotzky, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103, 033003 (2009).
[CrossRef] [PubMed]

Tsutsumi, O.

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268, 1873–1875 (1995).
[CrossRef] [PubMed]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2002).
[CrossRef] [PubMed]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. Photonics1, 65–69 (2007).
[CrossRef]

Vudyasetu, P. K.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photonics3, 103–106 (2009).
[CrossRef]

Walsworth, R. L.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev.6, 333–353 (2011).
[CrossRef]

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783 (2001).
[CrossRef] [PubMed]

Wei, D.

Winger, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
[CrossRef] [PubMed]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. Photonics1, 65–69 (2007).
[CrossRef]

Xiao, Y.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev.6, 333–353 (2011).
[CrossRef]

Xu, J.

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett.93, 133903 (2004).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping Light All Optically,” Phys. Rev. Lett.92, 083901 (2004).
[CrossRef] [PubMed]

Zhang, G.

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett.93, 133903 (2004).
[CrossRef] [PubMed]

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318, 1748–1750 (2007).
[CrossRef] [PubMed]

J. Chem. Phys.

D. Statman and I. Janossy, “Study of photoisomerization of azo dyes in liquid crystals,” J. Chem. Phys.118, 3222 (2003).
[CrossRef]

J. Nonlinear Opt. Phys. & Materials

I. Janossy and L. Szabados, “Photoisomerization of azo-dyes in nematic liquid crystals,” J. Nonlinear Opt. Phys. & Materials7, 539–551 (1998).
[CrossRef]

Laser Photonics Rev.

U. Bortolozzo, S. Residori, and J. P. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photonics Rev.4, 483–498 (2010).
[CrossRef]

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev.6, 333–353 (2011).
[CrossRef]

Nat. Photonics

F. Xia, L. Sekaric, and Y. Vlasov, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. Photonics1, 65–69 (2007).
[CrossRef]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474 (2008).
[CrossRef]

Nature

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature409, 490–493 (2001).
[CrossRef] [PubMed]

T. Chanèliere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature438, 833–836 (2005).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397, 594–598 (1999).
[CrossRef]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T.T Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472, 69–73 (2011).
[CrossRef] [PubMed]

Nature Photonics

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photonics3, 103–106 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471, 221–267 (2009).
[CrossRef]

Phys. Rev. Lett.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003).
[CrossRef] [PubMed]

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett.103, 033003 (2009).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88, 023602 (2002).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95, 063601 (2005).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping Light All Optically,” Phys. Rev. Lett.92, 083901 (2004).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, and R. L. Walsworth, “Storage of light in atomic vapor,” Phys. Rev. Lett.86, 783 (2001).
[CrossRef] [PubMed]

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett.91, 083902 (2003).
[CrossRef] [PubMed]

G. Zhang, F. Bo, R. Dong, and J. Xu, “Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett.93, 133903 (2004).
[CrossRef] [PubMed]

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett.100, 203603 (2008).
[CrossRef] [PubMed]

Science

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science268, 1873–1875 (1995).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318, 1748–1750 (2007).
[CrossRef] [PubMed]

Other

P. G. de Gennes and J. Prost, J. The Physics of Liquid Crystals (Oxford Science Publications, 1993).

G. Chilaya, Cholesteric liquid crystals: optics, electrooptics and photooptics in Chirality in Lliquid Crystals, Ch. Bahr and H. Kitzerow, eds (Springer Verlag, New York, 2000).

D. Wei, “Nonlinear optical studies of chiral liquid crystals,” PhD thesis, University of Nice-Sophia Antipolis (2012).

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast” light,” in Progress in Optics, edited by E. Wolf, (Elsevier Science, Amsterdam, 2002), Vol. 43, pp. 497–530.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Molecular structure of the azo-dyes; trans-cis conformational change occurs under light irradiation: in the trans state molecules are aligned along their long axis, in the cis state they are characterized by a V-like shape. (b) Equivalent energy diagram of the trans-cis photo-isomerization: after a fast excitation, molecules decay to the cis state, which is metastable and transforms back to trans with a slow decay rate Γ. (c) Pictorial representation of the azo-dye doped chiral medium : the dyes are represented by red rods (trans state) aligned with the helical structure of the chiral host; in the illuminated region the rods becomes V-shaped (cis state), altering the local order parameter.

Fig. 2
Fig. 2

Response time τ as a function of the total light intensity I incident on the sample; square: experimental data, line: fit with the theoretical curve.

Fig. 3
Fig. 3

(a) Experimental setup: the pump EP and signal beam ES are produced by a cw solid state laser, λ = 532 nm, and sent to interfere in the dye doped chiral liquid crystal, LC-cell; quarter wave plates (QWP) are used to change the beam polarizations from linear to circular. ES is time modulated by an electro-optic modulator (EOM); a shutter is used to switch on/off the pump. The input ES and output pulse E0 are detected by the photodiodes, PD1 and PD2, respectively. (b) Experimental temporal traces of the input (blue line) and output (red line) pulses recorded for |AP|2 = 2.1 mW / cm2, |AS|2 = 0.1 mW / cm2 and input pulse duration 140 ms. The group delay of the output pulse is 31.3 ms. c) Broadening of the output pulse as a function of the input pulse duration.

Fig. 4
Fig. 4

Light storage: the output pulse is recovered after switching off the pump (dashed line); the off time is increased from bottom to top; the blue line is the input signal pulse, the red line is the output pulse. In the inset is shown a magnification of the output pulse stored and retrieved after 160 ms. The input pulse width is 20 ms.

Fig. 5
Fig. 5

Signal retrieval efficiency η = |A0|2/|AS|2 versus the storage time normalised to the medium response time τ; the efficiency of the dye-doped chiral (red circles) and non-chiral (blue circles) liquid crystal, LC, cell are compared.

Fig. 6
Fig. 6

(a) Theoretically predicted variation of the cis state molecule concentration versus the frequency detuning Δ. The parameters used in the calculation are: ΦTC = 0.25, ΦCT = 0.4, Γ = 5.29 s−1, σT/σC = 7. (b) Corresponding absorption as a function of the frequency detuning; the black squares are experimental data, the continuous line is the theoretical curve. (c) Theoretically calculated phase shift as function of frequency detuning.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d N C d t = σ T Φ T C ( N N C ) 1 ω σ C Φ C T N C 1 ω Γ N C ,
N C ( std ) = σ T Φ T C σ T Φ T C + σ C Φ C T I / I SAT 1 + I / I SAT N ,
I SAT = Γ ω σ T Φ T C + σ C Φ C T
α ( std ) = ( N N C ( std ) ) σ T + N C ( std ) σ C ,
α ( std ) = [ 1 σ C ( σ T / σ C 1 ) Φ T C σ T Φ T C + σ C Φ C T I / I SAT 1 + I / I SAT ] σ T N .
τ d N C d t = N C ( std ) N C ,
τ = 1 Γ ( 1 + I / I SAT )
E = A P e ι ( k P r ω P t ) + A S e ι ( k S r + ω S t ) + c . c . ,
I = I m + [ A P A S e ι ( ( k P k S ) r Δ t ) + c . c . ] ,
N C = N C ( std ) + [ N C ( 1 ) e ι ( ( k P k S ) r Δ t ) + c . c . ] ,
N C ( 1 ) = σ T Φ T C σ T Φ T C + σ C Φ C T A P A S / I SAT ( 1 + I P / I SAT ) ( 1 + I P / I SAT ι Δ / Γ ) N ,
α = ( N N C ) σ T + N C σ C ,
α = α ( std ) + δ α cos ( ( k P k S ) r Δ t + δ φ ) ,
δ α = 2 N σ T ( σ T σ C ) Φ T C ( σ T Φ T C + σ C Φ C T ) | A P A S | I SAT ( 1 + I P / I SAT ) ( 1 + I P / I SAT ) 2 + ( Δ / Γ ) 2
tan ( δ φ ) = Δ / Γ 1 + I P / I SAT
E out = E in e α L 2 = E i n e [ α std + δ α cos ( ( k P k S ) r Δ t + δ φ ) ] L 2 .
E 0 = A S e α 0 L 2 + ι φ 0 e ι ( k 0 r ω 0 t ) + c . c . ,
α 0 = α ( std ) 2 L log [ L N σ T ( σ T σ C ) Φ T C 2 ( σ T Φ T C + σ C Φ C T ) I P I SAT ( 1 + I P / I SAT ) ( 1 + I P / I SAT ) 2 + ( Δ / Γ ) 2 ] ,
tan ( φ 0 ) = Δ / Γ 1 + I P / I SAT
v g = L ( φ 0 ω 0 ) 1 ,
v g ( 1 + I P I SAT + Δ 2 / Γ 2 1 + I P / I SAT ) Γ L .

Metrics