Abstract

Wavelength tunable optical coherent burst-mode receivers (BMR) can offer flexibility and sub-wavelength granularity for dynamic WDM networks. A new BMR design with dispersion equalizer plus frequency offset estimator is proposed for simultaneous dispersion compensation and frequency offset estimation. Its good performance is verified by simulations. A training sequence as short as 4K symbols, corresponding to an initialization time of 160 ns, is found to be enough to support 200 km transmission distance plus over ± 5 GHz frequency offset. The new BMR design can also work under the case when transient frequency offset from wavelength tuning exists in the system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Downie, J. Hurley, D. Pikula, and X. Zhu, “Ultra-long-haul 112 Gb/s PM-QPSK transmission systems using longer spans and Raman amplification,” Opt. Express20(9), 10353–10358 (2012).
    [CrossRef] [PubMed]
  2. P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol.30(24), 3824–3835 (2012).
    [CrossRef]
  3. M. Tomizawa, “DSP aspects for deployment of 100G-DWDM systems in carrier networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper CTuT2.
    [CrossRef]
  4. A. Meiyappan, P.-Y. Kam, and H. Kim, “A complex-weighted, decision-aided, maximum-likelihood carrier phase and frequency-offset estimation algorithm for coherent optical detection,” Opt. Express20(18), 20102–20114 (2012).
    [CrossRef] [PubMed]
  5. D. Lavery, M. Ionescu, S. Makovejs, E. Torrengo, and S. J. Savory, “A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver,” Opt. Express18(25), 25855–25860 (2010).
    [CrossRef] [PubMed]
  6. M. Tomizawa, “Real-time implementation of packet-by-packet polarization demultiplexing in a 28 Gbs burst mode coherent receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3H.6.
  7. J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper PDPB5.K.
    [CrossRef]
  8. B. C. Thomsen, R. Maher, D. S. Millar, and S. J. Savory, “Burst mode receiver for 112 Gb/s DP-QPSK with parallel DSP,” Opt. Express19(26), B770–B776 (2011).
    [CrossRef] [PubMed]
  9. R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Widely tunable burst mode digital coherent receiver with fast reconfiguration time for 112 Gb/s DP-QPSK WDM networks,” J. Lightwave Technol.30(24), 3924–3930 (2012).
    [CrossRef]
  10. M. Li, N. Deng, F. N. Hauske, Q. Xue, X. Shi, Z. Feng, S. Cao, and Q. Xiong, “Optical burst-mode coherent receiver with a fast tunable LO for receiving multi-wavelength burst signals,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1G.3.
    [CrossRef]
  11. M. S. Faruk and K. Kikuchi, “Adaptive frequency-domain equalization in digital coherent optical receivers,” Opt. Express19(13), 12789–12798 (2011).
    [CrossRef] [PubMed]
  12. A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett.22(1), 45–47 (2010).
    [CrossRef]
  13. J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s transmission over 6860 km with sub-nyquist channel spacing,” J. Lightwave Technol.30(4), 651–657 (2012).
    [CrossRef]
  14. J. C. Cartledge, J. D. Downie, J. E. Hurley, X. Zhu, and I. Roudas, “Bit error ratio performance of 112 Gb/s PM-QPSK transmission systems,” J. Lightwave Technol.30(10), 1475–1479 (2012).
    [CrossRef]
  15. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, M. S. Alfiad, A. Napoli, and B. Lankl, “DSP for coherent single-carrier receivers,” J. Lightwave Technol.27(16), 3614–3622 (2009).
    [CrossRef]
  16. R. A. Soriano, F. N. Hauske, N. G. Gonzalez, Z. Zhang, Y. Ye, and I. T. Monroy, “Chromatic dispersion estimation in digital coherent receivers,” J. Lightwave Technol.29(11), 1627–1637 (2011).
    [CrossRef]
  17. X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
    [CrossRef]
  18. R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Fast switching burst mode receiver in a 24-channel 112Gb/s DP-QPSK WDM system with 240km transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.57.
    [CrossRef]
  19. I. Fatadin and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol.27(15), 3042–3049 (2009).
    [CrossRef]
  20. K. Roberts, M. O'Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol.27(16), 3546–3559 (2009).
    [CrossRef]
  21. A. Bianciotto, B. J. Puttnam, B. Thomsen, and P. Bayvel, “Optimization of wavelength-locking loops for fast tunable laser stabilization in dynamic optical networks,” J. Lightwave Technol.27(12), 2117–2124 (2009).
    [CrossRef]

2012 (7)

J. D. Downie, J. Hurley, D. Pikula, and X. Zhu, “Ultra-long-haul 112 Gb/s PM-QPSK transmission systems using longer spans and Raman amplification,” Opt. Express20(9), 10353–10358 (2012).
[CrossRef] [PubMed]

P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol.30(24), 3824–3835 (2012).
[CrossRef]

A. Meiyappan, P.-Y. Kam, and H. Kim, “A complex-weighted, decision-aided, maximum-likelihood carrier phase and frequency-offset estimation algorithm for coherent optical detection,” Opt. Express20(18), 20102–20114 (2012).
[CrossRef] [PubMed]

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Widely tunable burst mode digital coherent receiver with fast reconfiguration time for 112 Gb/s DP-QPSK WDM networks,” J. Lightwave Technol.30(24), 3924–3930 (2012).
[CrossRef]

J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s transmission over 6860 km with sub-nyquist channel spacing,” J. Lightwave Technol.30(4), 651–657 (2012).
[CrossRef]

J. C. Cartledge, J. D. Downie, J. E. Hurley, X. Zhu, and I. Roudas, “Bit error ratio performance of 112 Gb/s PM-QPSK transmission systems,” J. Lightwave Technol.30(10), 1475–1479 (2012).
[CrossRef]

X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

2011 (3)

2010 (2)

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett.22(1), 45–47 (2010).
[CrossRef]

D. Lavery, M. Ionescu, S. Makovejs, E. Torrengo, and S. J. Savory, “A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver,” Opt. Express18(25), 25855–25860 (2010).
[CrossRef] [PubMed]

2009 (4)

Alfiad, M. S.

Awadalla, A.

Bayvel, P.

Bergano, N. S.

Bianciotto, A.

Cai, J.-X.

Cartledge, J. C.

Chen, X.

X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

Davidson, C. R.

Downie, J. D.

Faruk, M. S.

Fatadin, I.

Foursa, D. G.

Gonzalez, N. G.

Hauske, F. N.

Hurley, J.

Hurley, J. E.

Ionescu, M.

Kam, P.-Y.

Kikuchi, K.

Kim, H.

Krause, D. J.

Kuschnerov, M.

Lankl, B.

Laperle, C.

Lavery, D.

Long, K.

X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

Lucero, A.

Maher, R.

Makovejs, S.

Meiyappan, A.

Millar, D. S.

Mohs, G.

Monroy, I. T.

Napoli, A.

O'Sullivan, M.

Papadias, C. B.

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett.22(1), 45–47 (2010).
[CrossRef]

Patterson, W. W.

Petrou, C. S.

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett.22(1), 45–47 (2010).
[CrossRef]

Pikula, D.

Pilipetskii, A. N.

Piyawanno, K.

Puttnam, B. J.

Raptis, L.

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett.22(1), 45–47 (2010).
[CrossRef]

Roberts, K.

Roudas, I.

J. C. Cartledge, J. D. Downie, J. E. Hurley, X. Zhu, and I. Roudas, “Bit error ratio performance of 112 Gb/s PM-QPSK transmission systems,” J. Lightwave Technol.30(10), 1475–1479 (2012).
[CrossRef]

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett.22(1), 45–47 (2010).
[CrossRef]

Savory, S. J.

Sinkin, O. V.

Soriano, R. A.

Spinnler, B.

Sun, H.

Thomsen, B.

Thomsen, B. C.

Torrengo, E.

Vgenis, A.

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett.22(1), 45–47 (2010).
[CrossRef]

Winzer, P. J.

Wu, K.-T.

Ye, Y.

Zhang, H.

Zhang, Z.

Zhou, X.

X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

Zhu, X.

IEEE Photon. Technol. Lett. (2)

A. Vgenis, C. S. Petrou, C. B. Papadias, I. Roudas, and L. Raptis, “Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers,” IEEE Photon. Technol. Lett.22(1), 45–47 (2010).
[CrossRef]

X. Zhou, X. Chen, and K. Long, “Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence,” IEEE Photon. Technol. Lett.24(1), 82–84 (2012).
[CrossRef]

J. Lightwave Technol. (9)

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Widely tunable burst mode digital coherent receiver with fast reconfiguration time for 112 Gb/s DP-QPSK WDM networks,” J. Lightwave Technol.30(24), 3924–3930 (2012).
[CrossRef]

J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s transmission over 6860 km with sub-nyquist channel spacing,” J. Lightwave Technol.30(4), 651–657 (2012).
[CrossRef]

J. C. Cartledge, J. D. Downie, J. E. Hurley, X. Zhu, and I. Roudas, “Bit error ratio performance of 112 Gb/s PM-QPSK transmission systems,” J. Lightwave Technol.30(10), 1475–1479 (2012).
[CrossRef]

M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, M. S. Alfiad, A. Napoli, and B. Lankl, “DSP for coherent single-carrier receivers,” J. Lightwave Technol.27(16), 3614–3622 (2009).
[CrossRef]

R. A. Soriano, F. N. Hauske, N. G. Gonzalez, Z. Zhang, Y. Ye, and I. T. Monroy, “Chromatic dispersion estimation in digital coherent receivers,” J. Lightwave Technol.29(11), 1627–1637 (2011).
[CrossRef]

P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol.30(24), 3824–3835 (2012).
[CrossRef]

I. Fatadin and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol.27(15), 3042–3049 (2009).
[CrossRef]

K. Roberts, M. O'Sullivan, K.-T. Wu, H. Sun, A. Awadalla, D. J. Krause, and C. Laperle, “Performance of dual-polarization QPSK for optical transport systems,” J. Lightwave Technol.27(16), 3546–3559 (2009).
[CrossRef]

A. Bianciotto, B. J. Puttnam, B. Thomsen, and P. Bayvel, “Optimization of wavelength-locking loops for fast tunable laser stabilization in dynamic optical networks,” J. Lightwave Technol.27(12), 2117–2124 (2009).
[CrossRef]

Opt. Express (5)

Other (5)

M. Tomizawa, “Real-time implementation of packet-by-packet polarization demultiplexing in a 28 Gbs burst mode coherent receiver,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3H.6.

J. E. Simsarian, J. Gripp, A. H. Gnauck, G. Raybon, and P. J. Winzer, “Fast-tuning 224-Gb/s intradyne receiver for optical packet networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2010), paper PDPB5.K.
[CrossRef]

M. Tomizawa, “DSP aspects for deployment of 100G-DWDM systems in carrier networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper CTuT2.
[CrossRef]

M. Li, N. Deng, F. N. Hauske, Q. Xue, X. Shi, Z. Feng, S. Cao, and Q. Xiong, “Optical burst-mode coherent receiver with a fast tunable LO for receiving multi-wavelength burst signals,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTu1G.3.
[CrossRef]

R. Maher, D. S. Millar, S. J. Savory, and B. C. Thomsen, “Fast switching burst mode receiver in a 24-channel 112Gb/s DP-QPSK WDM system with 240km transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.57.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the optical coherent BMR design.

Fig. 2
Fig. 2

Convergence speed of the equalizer’s coefficient for different frequency offsets and different step-sizes.

Fig. 3
Fig. 3

Convergence speed and the error performance of the BMR with different frequency offsets, different step-sizes and different transmission distances.

Fig. 4
Fig. 4

Comparison on the convergence speed of the CMA and LMS algorithms.

Fig. 5
Fig. 5

Transient frequency offset with wavelength tunable BMR.

Fig. 6
Fig. 6

Convergence speed and error performance of the BMR with and without transient frequency offset.

Fig. 7
Fig. 7

Comparison on the convergence speed of the CMA and LMS algorithms with transient frequency offset.

Tables (1)

Tables Icon

Table 1 Working range of frequency offset at different transmission distances

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ε x(y),k = z x(y),k I x(y),k e j θ k = z x(y),k I x(y),k e j( θ k1 +ΔωT) .
ΔωT=arg N ( z ˜ x,k z ˜ x,k1 * + z ˜ y,k z ˜ y,k1 * )
z ˜ x(y),k = z x(y),k I x(y),k * .
c(t)= F 1 { exp( j 2 β 2 ω 2 L ) }.
h(t)= F 1 { exp( j 2 β 2 ω 2 L ) }
r x(y) (t)=( s x(y) (t)c(t) ) e jΔωt .
R x(y) (jω)= C(jω) S x(y) (jω) | ω=ωΔω =exp( j 2 β 2 (ωΔω) 2 L ) S x(y) (j(ωΔω)).
Z x(y) (jω)=H(jω) R x(y) (jω) =exp( + j 2 β 2 ω 2 L )exp( j 2 β 2 (ωΔω) 2 L ) S x(y) (j(ωΔω)) =exp( j β 2 ωΔωL )exp( j 2 β 2 Δ ω 2 L ) S x(y) (j(ωΔω)).
z x(y) (t)= e j 1 2 β 2 Δ ω 2 L s x(y) (t+ β 2 ΔωL) e jΔωt .
U i (jω)=( e j( ϕ i +ω τ i )/2 0 0 e j( ϕ i +ω τ i )/2 )×( cos α i sin α i sin α i cos α i ).
r k =( I 0 δ(k) c k ) e jkΔωT = I 0 c k e jkΔωT
z k = m h m r km = m h m I 0 c km e j(km)ΔωT = I 0 e jkΔωT m h m c km e jmΔωT .
ε x(y),k = z x(y),k ( 1 | z x(y),k | 2 ).
Δ λ OT (t)=Δ λ init e ω E t ·cos( ω O t),

Metrics