Abstract

An advanced version of Jones matrix optical coherence tomography (JMT) is demonstrated for Doppler and polarization sensitive imaging of the posterior eye. JMT is capable of providing localized flow tomography by Doppler detection and investigating the birefringence property of tissue through a three-dimensional (3-D) Jones matrix measurement. Owing to an incident polarization multiplexing scheme based on passive optical components, this system is stable, safe in a clinical environment, and cost effective. Since the properties of this version of JMT provide intrinsic compensation for system imperfection, the system is easy to calibrate. Compared with the previous version of JMT, this advanced JMT achieves a sufficiently long depth measurement range for clinical cases of posterior eye disease. Furthermore, a fine spectral shift compensation method based on the cross-correlation of calibration signals was devised for stabilizing the phase of OCT, which enables a high sensitivity Doppler OCT measurement. In addition, a new theory of JMT which integrates the Jones matrix measurement, Doppler measurement, and scattering measurement is presented. This theory enables a sensitivity-enhanced scattering OCT and high-sensitivity Doppler OCT. These new features enable the application of this system to clinical cases. A healthy subject and a geographic atrophy patient were measured in vivo, and simultaneous imaging of choroidal vasculature and birefringence structures are demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto and W. Drexler, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
  2. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
    [CrossRef] [PubMed]
  3. V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823.
    [CrossRef] [PubMed]
  4. M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
    [CrossRef] [PubMed]
  5. T. C. Chen, “Spectral domain optical coherence tomography in glaucoma: Qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (An AOS thesis),” Trans. Am. Ophthalmo. Soc. 107, 254–281 (2009). PMID: PMCID: PMC2814580.
    [PubMed]
  6. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Arch. Ophthalmol. 112, 1584–1589 (1994).
    [CrossRef] [PubMed]
  7. A. R. S. Radhakrishnan, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
    [CrossRef] [PubMed]
  8. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
    [CrossRef]
  9. Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt 3, 446–455 (1998).
    [CrossRef] [PubMed]
  10. P. J. Tadrous, “Methods for imaging the structure and function of living tissues and cells: 1. optical coherence tomography,” J. Pathol. 191, 115–119 (2000).
    [CrossRef] [PubMed]
  11. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
    [CrossRef] [PubMed]
  12. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
    [CrossRef] [PubMed]
  13. T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44, 145–152 (2006).
    [CrossRef] [PubMed]
  14. V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
    [CrossRef] [PubMed]
  15. J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
    [CrossRef] [PubMed]
  16. B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Express 3, 230–238 (1998).
    [CrossRef] [PubMed]
  17. F. Feldchtein, V. Gelikonov, R. Iksanov, G. Gelikonov, R. Kuranov, A. Sergeev, N. Gladkova, M. Ourutina, D. Reitze, and J. Warren, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3, 239–250 (1998).
    [CrossRef] [PubMed]
  18. B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral. Rehabil. 28, 1092–1093 (2001).
    [CrossRef]
  19. R. Brandenburg, B. Haller, and C. Hauger, “Real-time in vivo imaging of dental tissue by means of optical coherence tomography (OCT),” Opt. Commun. 227, 203–211 (2003).
    [CrossRef]
  20. J. Izatt, M. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quant. 2, 1017–1028 (1996).
    [CrossRef]
  21. S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803 (2000).
    [CrossRef] [PubMed]
  22. B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
    [CrossRef] [PubMed]
  23. I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
    [CrossRef] [PubMed]
  24. N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
    [CrossRef] [PubMed]
  25. F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
    [CrossRef]
  26. T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
    [CrossRef] [PubMed]
  27. T. Kubo, C. Xu, Z. Wang, N. S. v. Ditzhuijzen, and H. G. Bezerra, “Plaque and thrombus evaluation by optical coherence tomography,” Int. J. Cardiovasc. Imaging 27, 289–298 (2011).
    [CrossRef] [PubMed]
  28. Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
    [CrossRef] [PubMed]
  29. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
    [CrossRef] [PubMed]
  30. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003).
    [CrossRef] [PubMed]
  31. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by fourier-domain color doppler optical coherence tomography.” Opt. Lett. 29, 171–173 (2004).
    [CrossRef] [PubMed]
  32. H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
    [CrossRef] [PubMed]
  33. V. J. Srinivasan, S. Sakadžić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18, 2477 (2010).
    [CrossRef] [PubMed]
  34. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color doppler fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
    [CrossRef] [PubMed]
  35. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2, 1539–1552 (2011).
    [CrossRef] [PubMed]
  36. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
    [CrossRef] [PubMed]
  37. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
    [CrossRef]
  38. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  39. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
    [CrossRef]
  40. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
    [CrossRef] [PubMed]
  41. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
    [CrossRef] [PubMed]
  42. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12, 5940–5951 (2004).
    [CrossRef] [PubMed]
  43. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
    [CrossRef] [PubMed]
  44. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). PMID: .
    [CrossRef] [PubMed]
  45. Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17, 3980–3996 (2009).
    [CrossRef] [PubMed]
  46. E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009).
    [CrossRef] [PubMed]
  47. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006). PMID: .
    [CrossRef] [PubMed]
  48. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
    [CrossRef]
  49. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
    [CrossRef]
  50. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004). PMID: .
    [CrossRef] [PubMed]
  51. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421–2431 (2007).
    [CrossRef] [PubMed]
  52. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12, 041205 (2007). PMID: .
    [CrossRef] [PubMed]
  53. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008). PMID: .
    [CrossRef] [PubMed]
  54. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008). PMID: .
    [CrossRef] [PubMed]
  55. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
    [CrossRef]
  56. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and stokes vector determination.” J. Biomed. Opt. 7, 359–371 (2002).
    [CrossRef] [PubMed]
  57. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002). PMID: .
    [CrossRef] [PubMed]
  58. S. Jiao, W. Yu, G. Stoica, and L. Wang, “Optical-fiber-based mueller optical coherence tomography,” Opt. Lett. 28, 1206–1208 (2003).
    [CrossRef] [PubMed]
  59. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
    [CrossRef] [PubMed]
  60. Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
    [CrossRef] [PubMed]
  61. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20, 10229–10241 (2012).
    [CrossRef] [PubMed]
  62. American National Standards Institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2007(American National Standards Institute, New York, 2007).
  63. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005).
    [CrossRef] [PubMed]
  64. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μ m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
    [CrossRef] [PubMed]
  65. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
    [CrossRef] [PubMed]
  66. B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μ m for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011).
    [CrossRef] [PubMed]
  67. Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
    [CrossRef] [PubMed]
  68. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
    [CrossRef] [PubMed]
  69. M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express 18, 13964–13980 (2010).
    [CrossRef] [PubMed]
  70. Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2, 2392–2402 (2011).
    [CrossRef] [PubMed]
  71. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
    [CrossRef] [PubMed]
  72. K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
    [CrossRef] [PubMed]
  73. J. P. Sarks, S. H. Sarks, and M. C. Killingsworth, “Evolution of geographic atrophy of the retinal pigment epithelium,” Eye 2, 552–577 (1988). PMID: .
    [CrossRef] [PubMed]
  74. R. Klein, M. D. Davis, Y. L. Magli, P. Segal, B. E. Klein, and L. Hubbard, “The wisconsin age-related maculopathy grading system,” Ophthalmology 98, 1128–1134 (1991). PMID: .
    [PubMed]
  75. J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes.” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
    [PubMed]
  76. S. Moon, S.-W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18, 24395–24404 (2010).
    [CrossRef] [PubMed]

2012 (5)

2011 (4)

2010 (6)

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadžić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18, 2477 (2010).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express 18, 13964–13980 (2010).
[CrossRef] [PubMed]

S. Moon, S.-W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18, 24395–24404 (2010).
[CrossRef] [PubMed]

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

2009 (5)

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

T. C. Chen, “Spectral domain optical coherence tomography in glaucoma: Qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (An AOS thesis),” Trans. Am. Ophthalmo. Soc. 107, 254–281 (2009). PMID: PMCID: PMC2814580.
[PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17, 3980–3996 (2009).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

2008 (5)

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). PMID: .
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008). PMID: .
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008). PMID: .
[CrossRef] [PubMed]

2007 (6)

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12, 041205 (2007). PMID: .
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421–2431 (2007).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μ m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

2006 (7)

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44, 145–152 (2006).
[CrossRef] [PubMed]

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823.
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006). PMID: .
[CrossRef] [PubMed]

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (5)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004). PMID: .
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by fourier-domain color doppler optical coherence tomography.” Opt. Lett. 29, 171–173 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12, 5940–5951 (2004).
[CrossRef] [PubMed]

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

2003 (4)

2002 (4)

2001 (3)

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral. Rehabil. 28, 1092–1093 (2001).
[CrossRef]

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef] [PubMed]

A. R. S. Radhakrishnan, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
[CrossRef] [PubMed]

2000 (2)

P. J. Tadrous, “Methods for imaging the structure and function of living tissues and cells: 1. optical coherence tomography,” J. Pathol. 191, 115–119 (2000).
[CrossRef] [PubMed]

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (3)

1997 (3)

1996 (1)

J. Izatt, M. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quant. 2, 1017–1028 (1996).
[CrossRef]

1994 (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

R. Klein, M. D. Davis, Y. L. Magli, P. Segal, B. E. Klein, and L. Hubbard, “The wisconsin age-related maculopathy grading system,” Ophthalmology 98, 1128–1134 (1991). PMID: .
[PubMed]

1988 (1)

J. P. Sarks, S. H. Sarks, and M. C. Killingsworth, “Evolution of geographic atrophy of the retinal pigment epithelium,” Eye 2, 552–577 (1988). PMID: .
[CrossRef] [PubMed]

1986 (1)

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes.” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

Ahlers, C.

Akasaka, T.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

Akiba, M.

Alam, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Alberts, D. S.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

Altmeyer, P.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44, 145–152 (2006).
[CrossRef] [PubMed]

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Amaechi, B. T.

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral. Rehabil. 28, 1092–1093 (2001).
[CrossRef]

Arbustini, E.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

Aretz, H. T.

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

Audring, H.

J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
[CrossRef] [PubMed]

Bajraszewski, T.

Bambrick, M. L.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Barton, J. K.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

Baumann, B.

Berisha, F.

Bevins, C. L.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Bezerra, H. G.

T. Kubo, C. Xu, Z. Wang, N. S. v. Ditzhuijzen, and H. G. Bezerra, “Plaque and thrombus evaluation by optical coherence tomography,” Int. J. Cardiovasc. Imaging 27, 289–298 (2011).
[CrossRef] [PubMed]

Birngruber, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

Boas, D. A.

Bonnema, G. T.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803 (2000).
[CrossRef] [PubMed]

Braaf, B.

Brand, S.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803 (2000).
[CrossRef] [PubMed]

Brandenburg, R.

R. Brandenburg, B. Haller, and C. Hauger, “Real-time in vivo imaging of dental tissue by means of optical coherence tomography (OCT),” Opt. Commun. 227, 203–211 (2003).
[CrossRef]

Cable, A. E.

Carvalho, M.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823.
[CrossRef] [PubMed]

Cense, B.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12, 041205 (2007). PMID: .
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421–2431 (2007).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004). PMID: .
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
[CrossRef]

Chan, K.-P.

Chen, T. C.

T. C. Chen, “Spectral domain optical coherence tomography in glaucoma: Qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (An AOS thesis),” Trans. Am. Ophthalmo. Soc. 107, 254–281 (2009). PMID: PMCID: PMC2814580.
[PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12, 041205 (2007). PMID: .
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421–2431 (2007).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004). PMID: .
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
[CrossRef]

Chen, Z.

Chiu, S.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

Choi, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Choi, W.

Chong, C.

Colston, B.

Compton, C. C.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803 (2000).
[CrossRef] [PubMed]

Connor, J. T.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Costa, M.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

DaSilva, L.

Dave, D.

Davis, M. D.

R. Klein, M. D. Davis, Y. L. Magli, P. Segal, B. E. Klein, and L. Hubbard, “The wisconsin age-related maculopathy grading system,” Ophthalmology 98, 1128–1134 (1991). PMID: .
[PubMed]

de Boer, J.

de Boer, J. F.

B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μ m for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421–2431 (2007).
[CrossRef] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12, 041205 (2007). PMID: .
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004). PMID: .
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and stokes vector determination.” J. Biomed. Opt. 7, 359–371 (2002).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
[CrossRef]

J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

Delaney, C. P.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Delori, F. C.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes.” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

Ditzhuijzen, N. S. v.

T. Kubo, C. Xu, Z. Wang, N. S. v. Ditzhuijzen, and H. G. Bezerra, “Plaque and thrombus evaluation by optical coherence tomography,” Int. J. Cardiovasc. Imaging 27, 289–298 (2011).
[CrossRef] [PubMed]

Drexler, W.

Duan, L.

Duker, J. S.

Elsner, A. E.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). PMID: .
[CrossRef] [PubMed]

Engelhardt, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

Everett, M.

Farkas, D. L.

Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt 3, 446–455 (1998).
[CrossRef] [PubMed]

Fazio, V. W.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Feldchtein, F.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

F. Feldchtein, V. Gelikonov, R. Iksanov, G. Gelikonov, R. Kuranov, A. Sergeev, N. Gladkova, M. Ourutina, D. Reitze, and J. Warren, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3, 239–250 (1998).
[CrossRef] [PubMed]

Fercher, A. F.

Findl, O.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006). PMID: .
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12, 5940–5951 (2004).
[CrossRef] [PubMed]

Fitch, K. A.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes.” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

Fujimoto, J. G.

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20, 10229–10241 (2012).
[CrossRef] [PubMed]

B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2, 1539–1552 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadžić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18, 2477 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823.
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

J. G. Fujimoto and W. Drexler, Optical Coherence Tomography: Technology and Applications (Springer, 2008).

Fujiwara, H.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Fukuda, S.

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Gambichler, T.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44, 145–152 (2006).
[CrossRef] [PubMed]

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Garcia-Garcia, H. M.

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

Geitzenauer, W.

Gelikonov, G.

Gelikonov, V.

Gerth, C.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Geuns, R. J. v.

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

Gladkova, N.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

F. Feldchtein, V. Gelikonov, R. Iksanov, G. Gelikonov, R. Kuranov, A. Sergeev, N. Gladkova, M. Ourutina, D. Reitze, and J. Warren, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3, 239–250 (1998).
[CrossRef] [PubMed]

Gonzalo, N.

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

Gorczynska, I.

Gotoh, N.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

Götzinger, E.

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008). PMID: .
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006). PMID: .
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12, 5940–5951 (2004).
[CrossRef] [PubMed]

Gramlich, T. L.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Grube, E.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

Guagliumi, G.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

Haller, B.

R. Brandenburg, B. Haller, and C. Hauger, “Real-time in vivo imaging of dental tissue by means of optical coherence tomography (OCT),” Opt. Commun. 227, 203–211 (2003).
[CrossRef]

Halpern, E. F.

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

Hangai, M.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

Hauger, C.

R. Brandenburg, B. Haller, and C. Hauger, “Real-time in vivo imaging of dental tissue by means of optical coherence tomography (OCT),” Opt. Commun. 227, 203–211 (2003).
[CrossRef]

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

Higham, S. M.

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral. Rehabil. 28, 1092–1093 (2001).
[CrossRef]

Hirata, K.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Hirn, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008). PMID: .
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008). PMID: .
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006). PMID: .
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by fourier-domain color doppler optical coherence tomography.” Opt. Lett. 29, 171–173 (2004).
[CrossRef] [PubMed]

Hoffmann, K.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44, 145–152 (2006).
[CrossRef] [PubMed]

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Hong, Y.

Hong, Y.-J.

Hornegger, J.

Hosokawa, S.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Houser, S.

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

Huang, D.

Hubbard, L.

R. Klein, M. D. Davis, Y. L. Magli, P. Segal, B. E. Klein, and L. Hubbard, “The wisconsin age-related maculopathy grading system,” Ophthalmology 98, 1128–1134 (1991). PMID: .
[PubMed]

Iesaka, Y.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Iftima, N.

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

Iksanov, R.

Imanishi, T.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Ino, Y.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Inoue, R.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

Ishibashi, K.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Isobe, M.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Itoh, M.

Iwamoto, T.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Iwasaki, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). PMID: .
[CrossRef] [PubMed]

Izatt, J.

J. Izatt, M. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quant. 2, 1017–1028 (1996).
[CrossRef]

Izatt, J. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

Jackson, D. A.

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral. Rehabil. 28, 1092–1093 (2001).
[CrossRef]

Jaillon, F.

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Jang, I.-K.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

Jiao, S.

S. Jiao, W. Yu, G. Stoica, and L. Wang, “Optical-fiber-based mueller optical coherence tomography,” Opt. Lett. 28, 1206–1208 (2003).
[CrossRef] [PubMed]

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002). PMID: .
[CrossRef] [PubMed]

Ju, M. J.

Kaji, Y.

Kakita, K.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Kakuta, T.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Kareta, M.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Kashiwagi, M.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Kawaguchi, N.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Kawana, K.

Killingsworth, M. C.

J. P. Sarks, S. H. Sarks, and M. C. Killingsworth, “Evolution of geographic atrophy of the retinal pigment epithelium,” Eye 2, 552–577 (1988). PMID: .
[CrossRef] [PubMed]

Kimura, K.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Kita, M.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

Kitabata, H.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Kiuchi, T.

Klein, B. E.

R. Klein, M. D. Davis, Y. L. Magli, P. Segal, B. E. Klein, and L. Hubbard, “The wisconsin age-related maculopathy grading system,” Ophthalmology 98, 1128–1134 (1991). PMID: .
[PubMed]

Klein, R.

R. Klein, M. D. Davis, Y. L. Magli, P. Segal, B. E. Klein, and L. Hubbard, “The wisconsin age-related maculopathy grading system,” Ophthalmology 98, 1128–1134 (1991). PMID: .
[PubMed]

Knüttel, A.

J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
[CrossRef] [PubMed]

Ko, T. H.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823.
[CrossRef] [PubMed]

Kobayashi, K.

J. Izatt, M. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quant. 2, 1017–1028 (1996).
[CrossRef]

Komukai, K.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Korde, V. R.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

Kowalczyk, A.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823.
[CrossRef] [PubMed]

Kraus, M. F.

Krishnamurthy, C.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

Kubo, T.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

T. Kubo, C. Xu, Z. Wang, N. S. v. Ditzhuijzen, and H. G. Bezerra, “Plaque and thrombus evaluation by optical coherence tomography,” Int. J. Cardiovasc. Imaging 27, 289–298 (2011).
[CrossRef] [PubMed]

Kulkarni, M.

J. Izatt, M. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quant. 2, 1017–1028 (1996).
[CrossRef]

Kuranov, R.

Kurokawa, K.

Lademann, J.

J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
[CrossRef] [PubMed]

Lankenau, E.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Lashner, B. A.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Lee, B. H.

Lee, S.-W.

Lee, T.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Leydolt, C.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006). PMID: .
[CrossRef] [PubMed]

Li, H.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

Ligthart, J.

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

Lim, Y.

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

Liu, J. J.

MacNeill, B.

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

Madjarova, V. D.

Magli, Y. L.

R. Klein, M. D. Davis, Y. L. Magli, P. Segal, B. E. Klein, and L. Hubbard, “The wisconsin age-related maculopathy grading system,” Ophthalmology 98, 1128–1134 (1991). PMID: .
[PubMed]

Makita, S.

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express 18, 13964–13980 (2010).
[CrossRef] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). PMID: .
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008). PMID: .
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μ m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
[CrossRef]

Mao, Y.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

Marcon, N. E.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

Mariampillai, A.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

Mario, C. D.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

Matip, R.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44, 145–152 (2006).
[CrossRef] [PubMed]

Meyer, L.

J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
[CrossRef] [PubMed]

Michels, S.

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006). PMID: .
[CrossRef] [PubMed]

Milner, T. E.

Min, E. J.

Mintz, G. S.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

Miura, M.

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[CrossRef] [PubMed]

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2, 2392–2402 (2011).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17, 3980–3996 (2009).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). PMID: .
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008). PMID: .
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μ m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

Mizukoshi, M.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Moon, S.

Morosawa, A.

Morse, L.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Moselewski, F.

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

Moussa, G.

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44, 145–152 (2006).
[CrossRef] [PubMed]

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Mujat, M.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12, 041205 (2007). PMID: .
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421–2431 (2007).
[CrossRef] [PubMed]

Munce, N. R.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Nassif, N.

Nelson, J. S.

Nishioka, N. S.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803 (2000).
[CrossRef] [PubMed]

Ojima, Y.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

Okamura, T.

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

Onuma, Y.

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

Oshika, T.

Otberg, N.

J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
[CrossRef] [PubMed]

Otis, L.

Ourutina, M.

Ozaki, Y.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Pan, Y.

Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt 3, 446–455 (1998).
[CrossRef] [PubMed]

Park, B. H.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12, 041205 (2007). PMID: .
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421–2431 (2007).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004). PMID: .
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
[CrossRef]

Park, S. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

Pierce, M. C.

Pinto, F.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

Pircher, M.

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008). PMID: .
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006). PMID: .
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12, 5940–5951 (2004).
[CrossRef] [PubMed]

Podoleanu, A. G.

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral. Rehabil. 28, 1092–1093 (2001).
[CrossRef]

Poneros, J. M.

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803 (2000).
[CrossRef] [PubMed]

Potsaid, B.

Prati, F.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

Radhakrishnan, A. R. S.

A. R. S. Radhakrishnan, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
[CrossRef] [PubMed]

Ranger-Moore, J.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

Regar, E.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

Reitze, D.

Remzi, F. H.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Richter, H.

J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
[CrossRef] [PubMed]

Rogers, J. A.

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral. Rehabil. 28, 1092–1093 (2001).
[CrossRef]

Ruvinskaya, S.

Saboda, K.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

Sakadžic, S.

Sakai, T.

Salasche, S. J.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

Sand, D.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Sand, M.

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

Sarks, J. P.

J. P. Sarks, S. H. Sarks, and M. C. Killingsworth, “Evolution of geographic atrophy of the retinal pigment epithelium,” Eye 2, 552–577 (1988). PMID: .
[CrossRef] [PubMed]

Sarks, S. H.

J. P. Sarks, S. H. Sarks, and M. C. Killingsworth, “Evolution of geographic atrophy of the retinal pigment epithelium,” Eye 2, 552–577 (1988). PMID: .
[CrossRef] [PubMed]

Sarno, G.

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

Sasaki, K.

Sathyam, U.

Sattmann, H.

Schmetterer, L.

Schmidt-Erfurth, U.

Schultz, C.

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

Schuman, J. S.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823.
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

Segal, P.

R. Klein, M. D. Davis, Y. L. Magli, P. Segal, B. E. Klein, and L. Hubbard, “The wisconsin age-related maculopathy grading system,” Ophthalmology 98, 1128–1134 (1991). PMID: .
[PubMed]

Sergeev, A.

Serruys, P. W.

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

Serruys, P. W. J.

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

Shen, B.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Shen, Z. J.

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

Shishkov, M.

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

Sicam, V. A. D.

Sivak, M.V.

J. Izatt, M. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quant. 2, 1017–1028 (1996).
[CrossRef]

Slayton, L. D.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

Srinivasan, V. J.

V. J. Srinivasan, S. Sakadžić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18, 2477 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823.
[CrossRef] [PubMed]

Standish, B. A.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

Sterry, W.

J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
[CrossRef] [PubMed]

Stoica, G.

Stroeve, P.

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Sutoh, Y.

Swanson, E. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

Tadrous, P. J.

P. J. Tadrous, “Methods for imaging the structure and function of living tissues and cells: 1. optical coherence tomography,” J. Pathol. 191, 115–119 (2000).
[CrossRef] [PubMed]

Takahashi, K.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Takano, M.

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

Takarada, S.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Takayama, K.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Tanaka, A.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Tanimoto, T.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803 (2000).
[CrossRef] [PubMed]

Teichmann, A.

J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
[CrossRef] [PubMed]

Thomas, S.

J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
[CrossRef] [PubMed]

Trolli, P.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Tsujioka, H.

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Vakoc, B.

Vakoc, B. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

van Gemert, M. J. C.

van Meurs, J. C.

van Zeeburg, E.

Vass, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008). PMID: .
[CrossRef] [PubMed]

Vermeer, K. A.

Vitkin, A.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

Wang, H.-W.

J. Izatt, M. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quant. 2, 1017–1028 (1996).
[CrossRef]

Wang, L.

Wang, L. V.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002). PMID: .
[CrossRef] [PubMed]

Wang, Z.

T. Kubo, C. Xu, Z. Wang, N. S. v. Ditzhuijzen, and H. G. Bezerra, “Plaque and thrombus evaluation by optical coherence tomography,” Int. J. Cardiovasc. Imaging 27, 289–298 (2011).
[CrossRef] [PubMed]

Warneke, J. A.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

Warren, J.

Weiter, J. J.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes.” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef] [PubMed]

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

Werner, J. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

White, B. R.

Wilson, B. C.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

Wing, G. L.

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes.” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

Witkin, A. J.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823.
[CrossRef] [PubMed]

Wojtkowski, M.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823.
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by fourier-domain color doppler optical coherence tomography.” Opt. Lett. 29, 171–173 (2004).
[CrossRef] [PubMed]

Wu, W.

Xu, C.

T. Kubo, C. Xu, Z. Wang, N. S. v. Ditzhuijzen, and H. G. Bezerra, “Plaque and thrombus evaluation by optical coherence tomography,” Int. J. Cardiovasc. Imaging 27, 289–298 (2011).
[CrossRef] [PubMed]

Xu, W.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

Yamamoto, G.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Yamanari, M.

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
[CrossRef] [PubMed]

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2, 2392–2402 (2011).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express 18, 13964–13980 (2010).
[CrossRef] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17, 3980–3996 (2009).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). PMID: .
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008). PMID: .
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μ m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

Yang, V. X.

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

Yasuno, Y.

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
[CrossRef] [PubMed]

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[CrossRef] [PubMed]

Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 2, 2392–2402 (2011).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express 18, 13964–13980 (2010).
[CrossRef] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17, 3980–3996 (2009).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). PMID: .
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008). PMID: .
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μ m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
[CrossRef]

Yatagai, T.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008). PMID: .
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). PMID: .
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μ m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
[CrossRef]

Yonetsu, T.

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Yoshimura, N.

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

Yu, W.

Yun, S.

Zawadzki, R. J.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color doppler fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
[CrossRef] [PubMed]

Zuccaro, G.

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Arch. Ophthalmol. (2)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Arch. Ophthalmol. 112, 1584–1589 (1994).
[CrossRef] [PubMed]

A. R. S. Radhakrishnan, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119, 1179–1185 (2001).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Circ. J. (1)

Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J. 76, 922–927 (2012).
[CrossRef] [PubMed]

Circulation (1)

I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation 111, 1551–1555 (2005).
[CrossRef] [PubMed]

Clin. Gastroenterol. Hepatol. (1)

B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol. 2, 1080–1087 (2004).
[CrossRef] [PubMed]

Endoscopy (1)

S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy 32, 796–803 (2000).
[CrossRef] [PubMed]

Eur. Heart J. (2)

F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J. 31, 401–415 (2010).
[CrossRef]

T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J. 31, 1608–1615 (2010).
[CrossRef] [PubMed]

Eye (1)

J. P. Sarks, S. H. Sarks, and M. C. Killingsworth, “Evolution of geographic atrophy of the retinal pigment epithelium,” Eye 2, 552–577 (1988). PMID: .
[CrossRef] [PubMed]

Heart (1)

N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart 95, 1913–1919 (2009).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quant. (1)

J. Izatt, M. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quant. 2, 1017–1028 (1996).
[CrossRef]

Int. J. Cardiovasc. Imaging (1)

T. Kubo, C. Xu, Z. Wang, N. S. v. Ditzhuijzen, and H. G. Bezerra, “Plaque and thrombus evaluation by optical coherence tomography,” Int. J. Cardiovasc. Imaging 27, 289–298 (2011).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (5)

J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes.” Invest. Ophthalmol. Vis. Sci. 27, 145–152 (1986).
[PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008). PMID: .
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006). PMID: .
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004). PMID: .
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008). PMID: .
[CrossRef] [PubMed]

J. Am. Acad. Dermatol. (1)

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol. 37, 958–963 (1997).
[CrossRef]

J. Biomed. Opt (1)

Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt 3, 446–455 (1998).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12, 041205 (2007). PMID: .
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008). PMID: .
[CrossRef] [PubMed]

J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and stokes vector determination.” J. Biomed. Opt. 7, 359–371 (2002).
[CrossRef] [PubMed]

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002). PMID: .
[CrossRef] [PubMed]

J. Dermatol. Sci. (2)

T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40, 85–94 (2005).
[CrossRef] [PubMed]

T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci. 44, 145–152 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Oral. Rehabil. (1)

B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral. Rehabil. 28, 1092–1093 (2001).
[CrossRef]

J. Pathol. (1)

P. J. Tadrous, “Methods for imaging the structure and function of living tissues and cells: 1. optical coherence tomography,” J. Pathol. 191, 115–119 (2000).
[CrossRef] [PubMed]

Lasers Surg. Med. (2)

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39, 687–695 (2007).
[CrossRef] [PubMed]

H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med. 38, 754–761 (2006).
[CrossRef] [PubMed]

Nat. Med (1)

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med 15, 1219–1223 (2009).
[CrossRef] [PubMed]

Ophthalmology (4)

R. Klein, M. D. Davis, Y. L. Magli, P. Segal, B. E. Klein, and L. Hubbard, “The wisconsin age-related maculopathy grading system,” Ophthalmology 98, 1128–1134 (1991). PMID: .
[PubMed]

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113, 1425–1431 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823.
[CrossRef] [PubMed]

M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology 114, 763–773 (2007). PMID: .
[CrossRef] [PubMed]

Opt. Commun. (1)

R. Brandenburg, B. Haller, and C. Hauger, “Real-time in vivo imaging of dental tissue by means of optical coherence tomography (OCT),” Opt. Commun. 227, 203–211 (2003).
[CrossRef]

Opt. Express (24)

B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Express 3, 230–238 (1998).
[CrossRef] [PubMed]

F. Feldchtein, V. Gelikonov, R. Iksanov, G. Gelikonov, R. Kuranov, A. Sergeev, N. Gladkova, M. Ourutina, D. Reitze, and J. Warren, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express 3, 239–250 (1998).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadžić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express 18, 2477 (2010).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color doppler fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14, 7821–7840 (2006).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003).
[CrossRef] [PubMed]

S. Moon, S.-W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express 18, 24395–24404 (2010).
[CrossRef] [PubMed]

K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power doppler optical coherence angiography with adaptive optics,” Opt. Express 20, 22796–22812 (2012).
[CrossRef] [PubMed]

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20, 10229–10241 (2012).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13, 10652–10664 (2005).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μ m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μ m for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011).
[CrossRef] [PubMed]

Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012).
[CrossRef] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express 18, 13964–13980 (2010).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17, 3980–3996 (2009).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17, 4151–4165 (2009).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12, 5940–5951 (2004).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15, 2421–2431 (2007).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express 16, 16410–16422 (2008).
[CrossRef]

Opt. Lett. (9)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002).
[CrossRef]

J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
[CrossRef]

S. Jiao, W. Yu, G. Stoica, and L. Wang, “Optical-fiber-based mueller optical coherence tomography,” Opt. Lett. 28, 1206–1208 (2003).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[CrossRef] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by fourier-domain color doppler optical coherence tomography.” Opt. Lett. 29, 171–173 (2004).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22, 64–66 (1997).
[CrossRef] [PubMed]

Skin Res. Technol. (2)

J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol. 13, 119–132 (2007).
[CrossRef] [PubMed]

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001).
[CrossRef] [PubMed]

Trans. Am. Ophthalmo. Soc. (1)

T. C. Chen, “Spectral domain optical coherence tomography in glaucoma: Qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (An AOS thesis),” Trans. Am. Ophthalmo. Soc. 107, 254–281 (2009). PMID: PMCID: PMC2814580.
[PubMed]

Other (2)

J. G. Fujimoto and W. Drexler, Optical Coherence Tomography: Technology and Applications (Springer, 2008).

American National Standards Institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2007(American National Standards Institute, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of MC-JMT system. LP: linear polarizer, PC: polarization controller, FC: fiber collimator, M: mirror, PBS: polarizing beam splitter, BS: beam splitter, H- and V-BPD: balanced photo-detector for horizontally and vertically polarized signals, respectively.

Fig. 2
Fig. 2

Diagram of the Fourier transformed interference signals from horizontal (H) and vertical (V) detection channels.

Fig. 3
Fig. 3

MC-JMT cross-sectional images of a normal macular. (a) Raw OCT intensity images detected by detection channels of A (horizontal polarization) and B (vertical polarization) of the PD detection unit. The lower and upper images correspond to the first and second polarization state, respectively. (b) Global-phase-corrected sensitivity-enhanced scattering OCT obtained by coherent composition. (c) A phase retardation image, (d) A DOPU image, (e) power-of-Doppler-phase-shift image (e). The scale bar represents 500 μm × 500 μm.

Fig. 4
Fig. 4

MC-JMT cross-sections of a normal ONH. (a) a global-phase-corrected sensitivity-enhanced scattering OCT, (b) phase retardation, (c) DOPU, and (d) power of Doppler phase shift. The scale bar represents 500 μm × 500 μm.

Fig. 5
Fig. 5

En face projection images of (a) global-phase-corrected sensitivity-enhanced scattering OCT, (b) power of Doppler shift and (c) ICGA of an ONH. The scale bar represents 1 mm × 1 mm.

Fig. 6
Fig. 6

In vivo measurement images of a GA patient; (a) fundus photograph, (b) fundus auto-fluorescence image, en face projection images of (c) global-phase-corrected sensitivity-enhanced scattering intensity, and (d) Doppler shift power. The scale bar indicates 1 mm × 1 mm.

Fig. 7
Fig. 7

Multi-contrast cross-section images of geographic atrophy. The first to the fourth rows correspond to coherent composite scattering images, phase retardation images, DOPU images, and power-of-Doppler-shift images, respectively. Columns (1)–(3) were obtained at the location indicated in Fig. 6(a). Arrows indicate the atrophic region. The scale bar indicates 500 μm × 500 μm.

Fig. 8
Fig. 8

Measured phase noise with (○) and without (□) the spectral shift correction. The green line indicates the theoretical prediction.

Fig. 9
Fig. 9

OCT images of the macular of a healthy volunteer. (a) A raw image without FPN removal, (b) FPN removal without spectral shift cancellation, (c) with spectral shift cancellation and FPN removal, but no zero-padding applied. (d) FPN removal was performed after spectral shift cancellation with 1/16 pixel resolution.

Fig. 10
Fig. 10

The comparison between global- and bulk- phase-corrected sensitivity-enhanced scattering OCTs. (a) and (c) are a B-scan and en face projection of sensitivity-enhanced OCTs with global-phase correction, and (b) and (d) are those with bulk-phase correction.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

I r ( j ) = | E r ( j ) + E t ( j ) | 2
I c ( j ) = | E r ( j β j ) + E t ( j β j ) | 2 + I r ( j ) * δ ( j β j )
[ I r ( j ) ] [ I c ( j ) ] * = [ I r ( j ) ] [ I r * ( j ) ] [ δ ( j β j ) ]
1 [ [ I r ( j ) ] [ I c ( j ) ] * ] = I r ( j ) * I r * ( j ) * δ ( j β j ) = { I r ( j ) I r ( j ) } * δ ( j β j )
E out ( 1 ) ( z ) = χ J all ( z ) E in ( 1 )
E out ( 2 ) ( z ) = χ J all ( z ) E in ( 2 ) .
E out ( z ) = χ J all ( z ) E in
E out ( z ) = [ E out A ( 1 ) ( z ) E out A ( 2 ) ( z ) E out B ( 1 ) ( z ) E out B ( 2 ) ( z ) ] .
J all ( z ) = J out J s ( z ) J in
E out ( z ) E out ( z 0 ) 1 = χ J out J s ( z ) J in E in E in 1 J in 1 J out 1 χ 1 = χ J out J s ( z ) J out 1 χ 1
λ 1 , 2 = T / 2 ± T 2 / 4 D
δ ( z ) = { Arg [ λ 1 λ 2 * ] : 0 Arg [ λ 1 λ 2 * ] π Arg [ λ 1 * λ 2 ] : otherwise .
ε ( z ) = | ln | λ 1 | | λ 2 | |
Δ φ ( 0 , j ) Arg [ l = 1 4 exp i ( Arg [ M l ( j ) / M l ( 0 ) ] ) | M l ( 0 ) | 1 + | M l ( j ) | 1 ] ,
M ¯ j exp ( i Δ φ ( 0 , j ) ) M ( j ) .
S = [ I Q U V ] = [ | E out A ( 1 ) ( z ) | 2 + | E out B ( 1 ) ( z ) | 2 | E out A ( 1 ) ( z ) | 2 | E out B ( 1 ) ( z ) | 2 E out A ( 1 ) ( z ) E out B ( 1 ) ( z ) * + E out A ( 1 ) ( z ) * E out B ( 1 ) ( z ) i ( E out A ( 1 ) ( z ) E out B ( 1 ) ( z ) * E out A ( 1 ) ( z ) * E out B ( 1 ) ( z ) ) . ]
DOPU = Q ¯ 2 + U ¯ 2 + V ¯ 2
( Q ¯ , U ¯ , V ¯ ) = ( i Q i I i , i U i I i , i V i I i )
E out ( z ) = [ E out A ( 1 ) ( z ) E out A ( 2 ) ( z ) E out B ( 1 ) ( z ) E out B ( 2 ) ( z ) ] [ E out A ( 1 ) ( z ) e i θ 1 E out A ( 1 ) ( z ) e i θ 2 E out A ( 1 ) ( z ) e i θ 3 E out A ( 1 ) ( z ) ]
θ 1 Arg [ z E out A ( 2 ) ( z ) E out A ( 1 ) ( z ) * ]
θ 2 Arg [ z E out B ( 1 ) ( z ) E out A ( 1 ) ( z ) * ]
θ 3 Arg [ z E out B ( 2 ) ( z ) E out A ( 1 ) ( z ) * ]
E out ¯ ( z ) = 1 4 [ E out A ( 1 ) ( z ) + e i θ 1 E out A ( 2 ) ( z ) + e i θ 2 E out B ( 1 ) ( z ) + e i θ 3 E out B ( 2 ) ( z ) ] .
Δ ϕ ( z ) = 4 π τ λ c n ν z ( z ) + ϕ b
Δ ϕ ( z , j ) = Arg [ E out ¯ ( z , j + 1 ) E out ¯ ( z , j ) * ]
ϕ b ( j ) = Arg [ z E out ¯ ( z , j + 1 ) E out ¯ ( z , j ) * ]
Δ ϕ ¯ ( z , j ) = Arg [ j = m 0 m 0 + m 2 E out ¯ ( z , j + 1 ) E out ¯ ( z , j ) * exp ( i ϕ b ( j ) ) W ( z , j ) ]
W ( z , j ) = { 1 : E out ¯ ( z , j + 1 ) E out ¯ ( z , j ) * > ε 2 0 : otherwise
Δ ϕ ¯ ( z , j ) = Arg [ E out ¯ ( z , j + 1 ) E out ¯ ( z , j ) * exp ( i ϕ b ( j ) ) W ( z , j ) ] .
I ¯ ( z , j ) = | j = m 0 m 0 + m 1 E out ¯ ( z , j ) exp ( i Δ φ ( z ) ( m 0 , j ) ) | 2
I ¯ ( z , j ) = | j = m 0 m 0 + m 1 E out ¯ ( z , j ) exp ( i ϕ b ( m 0 , j ) ) | 2
ϕ b ( m 0 , j ) = Arg [ z E out ¯ ( z , j ) E out ¯ ( z , m 0 ) * ] .
σ Δ ϕ = ( 1 SNR s ) + ( z s z c ) 2 ( 1 SNR c )
E out ( z ) = η X R ρ J out J s ( z ) J in X f ( X E in )
E out ( z ) E out ( z 0 ) 1 = η X R ρ J out J z ( z ) J out 1 ρ 1 R 1 X 1 η 1 .

Metrics