Abstract

Mode instabilities have quickly become the most limiting effect when it comes to scaling the output average power of fiber laser systems. In consequence, there is an urgent need for effective strategies to mitigate it and, thus, to increase the power threshold at which it appears. Passive mitigation strategies can be classified into intrinsic, which are related to the fiber design, and extrinsic, which require a modification of the setup. In order to evaluate the impact of mitigation strategies, a means to calculate its power threshold and predict its behavior is required. In this paper we present a simple semi-analytic formula that is able to predict the changes of the mode instability threshold by analyzing the strength of the thermally-induced waveguide perturbations. Furthermore, we propose two passive mitigation strategies, one intrinsic and one extrinsic, that should lead to a significant increase of the power threshold of mode instabilities.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Maiman, “Stimulated optical radiation in Ruby,” Nature187(4736), 493–494 (1960).
    [CrossRef]
  2. T. J. Kane, R. C. Eckardt, and R. L. Byer, “Reduced thermal focussing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron.19(9), 1351–1354 (1983).
    [CrossRef]
  3. A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365 (1994).
    [CrossRef]
  4. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. MacKechnie, P. R. Barber, and J. M. Dawes, “Ytterbiumdoped silica fiber lasers—versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron.1(1), 2–13 (1995).
    [CrossRef]
  5. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=josab-27-11-B63 .
    [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, NY, 1995).
  7. N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol.5(2), 185–196 (1999).
    [CrossRef]
  8. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-5-689 .
    [CrossRef] [PubMed]
  9. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express14(7), 2715–2720 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2715 .
    [CrossRef] [PubMed]
  10. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express20(5), 5742–5753 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5742 .
    [CrossRef] [PubMed]
  11. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-2-94 .
    [CrossRef] [PubMed]
  12. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3258 .
    [CrossRef] [PubMed]
  13. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10180 .
    [CrossRef] [PubMed]
  14. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12912 .
    [CrossRef] [PubMed]
  15. A. V. Smith and J. J. Smith, “Steady-periodic method for modeling mode instability in fiber amplifiers,” Opt. Express21(3), 2606–2623 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2606 .
    [CrossRef] [PubMed]
  16. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20(10), 11407–11422 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11407 .
    [CrossRef] [PubMed]
  17. H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express. submitted.
  18. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express21(2), 1944–1971 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1944 .
    [CrossRef] [PubMed]
  19. C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express20(1), 440–451 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-440 .
    [CrossRef] [PubMed]
  20. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15710 .
    [CrossRef] [PubMed]
  21. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]
  22. A. Siegman, Lasers (University Science Books, Sausalito, CA, 1986).

2013 (2)

2012 (5)

2011 (3)

2010 (2)

2006 (1)

1999 (1)

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol.5(2), 185–196 (1999).
[CrossRef]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. MacKechnie, P. R. Barber, and J. M. Dawes, “Ytterbiumdoped silica fiber lasers—versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365 (1994).
[CrossRef]

1983 (1)

T. J. Kane, R. C. Eckardt, and R. L. Byer, “Reduced thermal focussing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron.19(9), 1351–1354 (1983).
[CrossRef]

1960 (1)

T. Maiman, “Stimulated optical radiation in Ruby,” Nature187(4736), 493–494 (1960).
[CrossRef]

Alkeskjold, T. T.

Andersen, T. V.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. MacKechnie, P. R. Barber, and J. M. Dawes, “Ytterbiumdoped silica fiber lasers—versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365 (1994).
[CrossRef]

Broderick, N. G. R.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol.5(2), 185–196 (1999).
[CrossRef]

Broeng, J.

Byer, R. L.

T. J. Kane, R. C. Eckardt, and R. L. Byer, “Reduced thermal focussing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron.19(9), 1351–1354 (1983).
[CrossRef]

Caplen, J.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol.5(2), 185–196 (1999).
[CrossRef]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. MacKechnie, P. R. Barber, and J. M. Dawes, “Ytterbiumdoped silica fiber lasers—versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Clarkson, W. A.

Dajani, I.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. MacKechnie, P. R. Barber, and J. M. Dawes, “Ytterbiumdoped silica fiber lasers—versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Dong, L.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol.5(2), 185–196 (1999).
[CrossRef]

Eckardt, R. C.

T. J. Kane, R. C. Eckardt, and R. L. Byer, “Reduced thermal focussing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron.19(9), 1351–1354 (1983).
[CrossRef]

Eidam, T.

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12912 .
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express20(1), 440–451 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-440 .
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15710 .
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3258 .
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-5-689 .
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-2-94 .
[CrossRef] [PubMed]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Ermeneux, S.

Gabler, T.

Giesen, A.

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365 (1994).
[CrossRef]

Hanf, S.

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. MacKechnie, P. R. Barber, and J. M. Dawes, “Ytterbiumdoped silica fiber lasers—versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Hansen, K. R.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365 (1994).
[CrossRef]

Jansen, F.

Jauregui, C.

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express20(1), 440–451 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-440 .
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15710 .
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12912 .
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3258 .
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-5-689 .
[CrossRef] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express. submitted.

Jørgensen, M. M.

Kane, T. J.

T. J. Kane, R. C. Eckardt, and R. L. Byer, “Reduced thermal focussing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron.19(9), 1351–1354 (1983).
[CrossRef]

Lægsgaard, J.

Laurila, M.

Limpert, J.

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12912 .
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15710 .
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express20(1), 440–451 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-440 .
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3258 .
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-5-689 .
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-2-94 .
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express14(7), 2715–2720 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2715 .
[CrossRef] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express. submitted.

MacKechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. MacKechnie, P. R. Barber, and J. M. Dawes, “Ytterbiumdoped silica fiber lasers—versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Maiman, T.

T. Maiman, “Stimulated optical radiation in Ruby,” Nature187(4736), 493–494 (1960).
[CrossRef]

Nilsson, J.

Offerhaus, H. L.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol.5(2), 185–196 (1999).
[CrossRef]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365 (1994).
[CrossRef]

Otto, H. J.

Otto, H.-J.

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. MacKechnie, P. R. Barber, and J. M. Dawes, “Ytterbiumdoped silica fiber lasers—versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Richardson, D. J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=josab-27-11-B63 .
[CrossRef]

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol.5(2), 185–196 (1999).
[CrossRef]

Robin, C.

Röser, F.

Rothhardt, J.

Salin, F.

Sammut, R. A.

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol.5(2), 185–196 (1999).
[CrossRef]

Schmidt, O.

Schreiber, T.

Seise, E.

Smith, A. V.

Smith, J. J.

Steinmetz, A.

Stutzki, F.

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. MacKechnie, P. R. Barber, and J. M. Dawes, “Ytterbiumdoped silica fiber lasers—versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

Tünnermann, A.

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12912 .
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express20(1), 440–451 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-440 .
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15710 .
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3258 .
[CrossRef] [PubMed]

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett.36(5), 689–691 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-5-689 .
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-2-94 .
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express14(7), 2715–2720 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2715 .
[CrossRef] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express. submitted.

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365 (1994).
[CrossRef]

Ward, B.

Wirth, C.

Witting, K.

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365 (1994).
[CrossRef]

Yvernault, P.

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Witting, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. J. Kane, R. C. Eckardt, and R. L. Byer, “Reduced thermal focussing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron.19(9), 1351–1354 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. MacKechnie, P. R. Barber, and J. M. Dawes, “Ytterbiumdoped silica fiber lasers—versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Top. Quantum Electron.1(1), 2–13 (1995).
[CrossRef]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

T. Maiman, “Stimulated optical radiation in Ruby,” Nature187(4736), 493–494 (1960).
[CrossRef]

Opt. Express (11)

C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express19(4), 3258–3271 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3258 .
[CrossRef] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10180 .
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express20(12), 12912–12925 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-12-12912 .
[CrossRef] [PubMed]

A. V. Smith and J. J. Smith, “Steady-periodic method for modeling mode instability in fiber amplifiers,” Opt. Express21(3), 2606–2623 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2606 .
[CrossRef] [PubMed]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express20(10), 11407–11422 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-11407 .
[CrossRef] [PubMed]

H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express. submitted.

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express21(2), 1944–1971 (2013), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1944 .
[CrossRef] [PubMed]

C. Jauregui, T. Eidam, H.-J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express20(1), 440–451 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-1-440 .
[CrossRef] [PubMed]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express20(14), 15710–15722 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-14-15710 .
[CrossRef] [PubMed]

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express14(7), 2715–2720 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2715 .
[CrossRef] [PubMed]

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express20(5), 5742–5753 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5742 .
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

N. G. R. Broderick, H. L. Offerhaus, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol.5(2), 185–196 (1999).
[CrossRef]

Opt. Lett. (2)

Other (2)

A. Siegman, Lasers (University Science Books, Sausalito, CA, 1986).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, NY, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Evolution of the mode instability threshold with the reduction of the quantum defect heating which was achieved a) by pumping at 976nm and by changing the signal wavelength or b) by emitting at 1030nm and by changing the pump wavelength. In both plots the black dashed line represents the expected evolution of the threshold due to the reduction of the quantum defect.

Fig. 2
Fig. 2

Evolution of the amplification efficiency for a fixed seed power of 50W a) when changing the signal wavelength while pumping at 976nm and b) when changing the pump wavelength while emitting at 1030nm.

Fig. 3
Fig. 3

Evolution of the available energy EG and gain G for a fixed pump power of 300W a) when changing the signal wavelength while pumping at 976nm and b) when changing the pump wavelength while emitting at 1030nm.

Fig. 4
Fig. 4

a) Evolution of the signal power along the amplifier when considering two fibers with different pump absorption and b) measure of the evolution of the grating strength along the active fibers simulated in a).

Fig. 5
Fig. 5

Comparison of the mode instability threshold for fibers with different pump absorption levels. All the fibers have an 80µm core, have been seeded with 50W at 1030nm and are pumped at 976nm.

Tables (1)

Tables Icon

Table 1 Classification of mitigation strategies for mode instabilities

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

L b (z)= λ ( n eff L P 01 (z) n eff HOM (z) )
Δ( 1 L b (z) ) ¯ L | P th =γ,
m=1 N Δ( n eff L P 01 n eff HOM )[m] | P th λγ L b ¯
N 2o N σ ap σ ap + σ ep ,
N 2 ¯ N σ al σ al + σ el ,
E= E stored E transparency = hc λ l AL( N 2o N 2 ¯ )
E G =E g o lnG g o ,
g o =[ ( σ al + σ el ) N 2o N σ al ]NL Γ l

Metrics