Abstract

We show that nearly perfect absorption can be achieved in a simple structure with highly doped silicon on a sapphire (SOS) substrate. An SOS structure with the n-Si film being 600 nm thick and having doping concentration of 2e19 cm−3 has an absorption peak of 96% in the film at a wavelength of 12.1 μm. More generally, 95% absorption in the n-Si can be achieved and tailored to specific wavelengths in the range of 11.6-15.1 μm utilizing dopings of 1-2.4e19 cm−3 and film thicknesses of 600-1000 nm. Regions of 90% absorption can be achievable down to 11 μm and up to as much as 22 μm with tailoring of doping and film thickness. It is also shown that choice of substrate with large k/n (imaginary over real part of refractive index) is imperative for high absorption in the thin-film and will play a role in tailoring possibilities. Shown here are results for n-Si, but in general these results also apply to p-Si and the methods may be used to investigate structures with alternative films or substrates. This investigated SOS structure has high potential since desired film thickness and doping investigated here for perfect absorption can be purchased commercially and easily tuned by etching the silicon film.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
    [CrossRef]
  2. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express16(9), 6507–6514 (2008).
    [CrossRef] [PubMed]
  3. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys.110(4), 043110 (2011).
    [CrossRef]
  4. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011).
    [CrossRef]
  5. W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express21(7), 9113–9122 (2013).
    [CrossRef] [PubMed]
  6. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett.37(3), 371–373 (2012).
    [CrossRef] [PubMed]
  7. M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B61(12), 8187–8201 (2000).
    [CrossRef]
  8. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1988).
  9. B. Van Zeghbroeck, “Detailed description of the effective mass,” in Principles of Semiconductor Device, http://ece-www.colorado.edu/~bart/book (2004).
  10. C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron.20(2), 77–89 (1977).
    [CrossRef]
  11. M. Born and M. Wolf, Principles of Optics, 7th expanded ed. (Cambridge University, 2002).
  12. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt.46(33), 8118–8133 (2007).
    [CrossRef] [PubMed]
  13. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
    [CrossRef]
  14. R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express20(4), 3814–3824 (2012).
    [CrossRef] [PubMed]
  15. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express20(11), 12155–12165 (2012).
    [CrossRef] [PubMed]
  16. J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE8545, 854504 (2012).
  17. D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett.102(18), 182107 (2013).
    [CrossRef]

2013

2012

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett.37(3), 371–373 (2012).
[CrossRef] [PubMed]

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express20(4), 3814–3824 (2012).
[CrossRef] [PubMed]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express20(11), 12155–12165 (2012).
[CrossRef] [PubMed]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE8545, 854504 (2012).

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

2011

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys.110(4), 043110 (2011).
[CrossRef]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011).
[CrossRef]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
[CrossRef]

2008

2007

2000

M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B61(12), 8187–8201 (2000).
[CrossRef]

1977

C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron.20(2), 77–89 (1977).
[CrossRef]

Adams, D. C.

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Boltasseva, A.

Boreman, G. D.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011).
[CrossRef]

Buchwald, W.

Buchwald, W. R.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011).
[CrossRef]

Canali, C.

C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron.20(2), 77–89 (1977).
[CrossRef]

Capasso, F.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Cleary, J. W.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE8545, 854504 (2012).

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express20(4), 3814–3824 (2012).
[CrossRef] [PubMed]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011).
[CrossRef]

Davids, P. S.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys.110(4), 043110 (2011).
[CrossRef]

Edwards, O.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011).
[CrossRef]

Eyink, K.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE8545, 854504 (2012).

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Ginn, J. C.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys.110(4), 043110 (2011).
[CrossRef]

Guo, J.

Hendrickson, J.

Herzinger, C. M.

M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B61(12), 8187–8201 (2000).
[CrossRef]

Jacoboni, C.

C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron.20(2), 77–89 (1977).
[CrossRef]

Jacobs, T.

Jarecki, R. L.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys.110(4), 043110 (2011).
[CrossRef]

Jonasz, M.

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Kim, J.

Kitamura, R.

Law, S.

Leedy, K. D.

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett.102(18), 182107 (2013).
[CrossRef]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE8545, 854504 (2012).

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Look, D. C.

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett.102(18), 182107 (2013).
[CrossRef]

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE8545, 854504 (2012).

Medhi, G.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011).
[CrossRef]

Naik, G. V.

Ottaviani, G.

C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron.20(2), 77–89 (1977).
[CrossRef]

Peale, R. E.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011).
[CrossRef]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express16(9), 6507–6514 (2008).
[CrossRef] [PubMed]

Pilon, L.

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Quaranta, A. A.

C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron.20(2), 77–89 (1977).
[CrossRef]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Rooney, G.

Schubert, M.

M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B61(12), 8187–8201 (2000).
[CrossRef]

Shahzad, M.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011).
[CrossRef]

Shaner, E. A.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys.110(4), 043110 (2011).
[CrossRef]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Snure, M. R.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE8545, 854504 (2012).

Soref, R.

Streyer, W.

Taylor, A. M.

Tiwald, T. E.

M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B61(12), 8187–8201 (2000).
[CrossRef]

Tiwari, A.

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE8545, 854504 (2012).

Wasserman, D.

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

Zhang, B.

Appl. Opt.

Appl. Phys. Lett.

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett.102(18), 182107 (2013).
[CrossRef]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett.101(22), 221101 (2012).
[CrossRef]

J. Appl. Phys.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys.110(4), 043110 (2011).
[CrossRef]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys.110(12), 123105 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Phys. Rev. B

M. Schubert, T. E. Tiwald, and C. M. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire,” Phys. Rev. B61(12), 8187–8201 (2000).
[CrossRef]

Proc. SPIE

J. W. Cleary, M. R. Snure, K. D. Leedy, D. C. Look, K. Eyink, and A. Tiwari, “Mid- to long-wavelength infrared surface plasmon properties in doped zinc oxides,” Proc. SPIE8545, 854504 (2012).

Solid-State Electron.

C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, “A review of some charge transport properties of silicon,” Solid-State Electron.20(2), 77–89 (1977).
[CrossRef]

Other

M. Born and M. Wolf, Principles of Optics, 7th expanded ed. (Cambridge University, 2002).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1988).

B. Van Zeghbroeck, “Detailed description of the effective mass,” in Principles of Semiconductor Device, http://ece-www.colorado.edu/~bart/book (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics