Abstract

We report on the thickness dependent laser cooling in CdS nanobelts pumped by a 532 nm green laser. The lowest achievable cooling temperature is found to strongly depend on thickness. No net cooling can be achieved in nanobelts with a thickness below 65 nm due to nearly zero absorption and larger surface nonradiative recombination. While for nanobelts thicker than ~120 nm, the reabsorption effect leads to the reduction of the cooling temperature. Based on the thickness dependent photoconductivity gain, mean emission energy and external quantum efficiency, the modeling of the normalized temperature change suggests a good agreement with the experimental results.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Zeitschrift für Physik A Hadrons and Nuclei 57, 739–746 (1929).
  2. R. I. Epstein and M. Sheik-Bahae, Optical Refrigeration (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009).
  3. M. Sheik-Bahae and R. I. Epstein, “Optical Refrigeration,” Nat. Photonics1(12), 693–699 (2007).
    [CrossRef]
  4. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
    [CrossRef]
  5. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
    [CrossRef]
  6. D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express18(17), 18061–18066 (2010).
    [CrossRef] [PubMed]
  7. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express19(19), 18229–18236 (2011).
    [CrossRef] [PubMed]
  8. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev.3(1-2), 67–84 (2009).
    [CrossRef]
  9. M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett.92(24), 247403 (2004).
    [CrossRef] [PubMed]
  10. J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys.100(11), 113116 (2006).
    [CrossRef]
  11. J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett.98(17), 177401 (2007).
    [CrossRef]
  12. J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B77(23), 235206 (2008).
    [CrossRef]
  13. G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett.97(11), 117401 (2006).
    [CrossRef] [PubMed]
  14. G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: Theoretical study,” Phys. Rev. B76(24), 245203 (2007).
    [CrossRef]
  15. E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett.75(9), 1258–1260 (1999).
    [CrossRef]
  16. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process.64(2), 143–147 (1997).
    [CrossRef]
  17. B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett.86(8), 081104 (2005).
    [CrossRef]
  18. D. A. Bender, J. G. Cederberg, C. Wang, and M. Sheik-Bahae, “Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling,” Appl. Phys. Lett.102(25), 252102 (2013).
    [CrossRef]
  19. J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
    [CrossRef] [PubMed]
  20. D. H. Li, J. Zhang, and Q. H. Xiong, “Surface Depletion Induced Quantum Confinement in CdS Nanobelts,” ACS Nano6(6), 5283–5290 (2012).
    [CrossRef] [PubMed]
  21. D. H. Li, J. Zhang, Q. Zhang, and Q. H. Xiong, “Electric-Field-Dependent Photoconductivity in CdS Nanowires and Nanobelts: Exciton Ionization, Franz-Keldysh, and Stark Effects,” Nano Lett.12(6), 2993–2999 (2012).
    [CrossRef] [PubMed]
  22. B. Imangholi, “Investigation of laser cooling in semiconductors,” (The University of New Mexico, United States - New Mexico., 2006).
  23. U. Rossler, Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group III: Condensed Matter. Semiconductors: II–VI and I–VII compounds, Vol. 41B (Springer: Berlin Heidelberg, 1999).
  24. G. W. Hooft and C. van Opdorp, “Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab,” J. Appl. Phys.60(3), 1065–1070 (1986).
    [CrossRef]
  25. P. T. Landsberg and M. J. Adams, “Radiative and Auger processes in semiconductors,” J. Lumin.7, 3–34 (1973).
    [CrossRef]
  26. D. Huppert, M. Evenor, and Y. Shapira, “Measurements of surface recombination velocity on CdS surfaces and Au interfaces,” J. Vac. Sci. Technol. A2(2), 532–533 (1984).
    [CrossRef]
  27. X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
    [CrossRef] [PubMed]
  28. X. Liu, R. Wang, Y. Jiang, Q. Zhang, X. Shan, and X. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys.108(5), 054310 (2010).
    [CrossRef]

2013 (2)

D. A. Bender, J. G. Cederberg, C. Wang, and M. Sheik-Bahae, “Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling,” Appl. Phys. Lett.102(25), 252102 (2013).
[CrossRef]

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

2012 (2)

D. H. Li, J. Zhang, and Q. H. Xiong, “Surface Depletion Induced Quantum Confinement in CdS Nanobelts,” ACS Nano6(6), 5283–5290 (2012).
[CrossRef] [PubMed]

D. H. Li, J. Zhang, Q. Zhang, and Q. H. Xiong, “Electric-Field-Dependent Photoconductivity in CdS Nanowires and Nanobelts: Exciton Ionization, Franz-Keldysh, and Stark Effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

2011 (2)

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

2010 (3)

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express18(17), 18061–18066 (2010).
[CrossRef] [PubMed]

X. Liu, R. Wang, Y. Jiang, Q. Zhang, X. Shan, and X. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys.108(5), 054310 (2010).
[CrossRef]

2009 (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev.3(1-2), 67–84 (2009).
[CrossRef]

2008 (1)

J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B77(23), 235206 (2008).
[CrossRef]

2007 (3)

G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: Theoretical study,” Phys. Rev. B76(24), 245203 (2007).
[CrossRef]

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett.98(17), 177401 (2007).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical Refrigeration,” Nat. Photonics1(12), 693–699 (2007).
[CrossRef]

2006 (2)

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys.100(11), 113116 (2006).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett.97(11), 117401 (2006).
[CrossRef] [PubMed]

2005 (1)

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett.86(8), 081104 (2005).
[CrossRef]

2004 (1)

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett.92(24), 247403 (2004).
[CrossRef] [PubMed]

1999 (1)

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett.75(9), 1258–1260 (1999).
[CrossRef]

1997 (1)

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process.64(2), 143–147 (1997).
[CrossRef]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

1986 (1)

G. W. Hooft and C. van Opdorp, “Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab,” J. Appl. Phys.60(3), 1065–1070 (1986).
[CrossRef]

1984 (1)

D. Huppert, M. Evenor, and Y. Shapira, “Measurements of surface recombination velocity on CdS surfaces and Au interfaces,” J. Vac. Sci. Technol. A2(2), 532–533 (1984).
[CrossRef]

1973 (1)

P. T. Landsberg and M. J. Adams, “Radiative and Auger processes in semiconductors,” J. Lumin.7, 3–34 (1973).
[CrossRef]

1929 (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Zeitschrift für Physik A Hadrons and Nuclei 57, 739–746 (1929).

Adams, M. J.

P. T. Landsberg and M. J. Adams, “Radiative and Auger processes in semiconductors,” J. Lumin.7, 3–34 (1973).
[CrossRef]

Bender, D. A.

D. A. Bender, J. G. Cederberg, C. Wang, and M. Sheik-Bahae, “Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling,” Appl. Phys. Lett.102(25), 252102 (2013).
[CrossRef]

Bertness, K. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process.64(2), 143–147 (1997).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Binder, R.

G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: Theoretical study,” Phys. Rev. B76(24), 245203 (2007).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett.97(11), 117401 (2006).
[CrossRef] [PubMed]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Cederberg, J. G.

D. A. Bender, J. G. Cederberg, C. Wang, and M. Sheik-Bahae, “Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling,” Appl. Phys. Lett.102(25), 252102 (2013).
[CrossRef]

Chen, R. J.

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

Cornell, E. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process.64(2), 143–147 (1997).
[CrossRef]

Di Lieto, A.

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Ekahana, S. A.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Epstein, R. I.

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev.3(1-2), 67–84 (2009).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical Refrigeration,” Nat. Photonics1(12), 693–699 (2007).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett.86(8), 081104 (2005).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett.92(24), 247403 (2004).
[CrossRef] [PubMed]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Evenor, M.

D. Huppert, M. Evenor, and Y. Shapira, “Measurements of surface recombination velocity on CdS surfaces and Au interfaces,” J. Vac. Sci. Technol. A2(2), 532–533 (1984).
[CrossRef]

Feng, Y. P.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Finkeißen, E.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett.75(9), 1258–1260 (1999).
[CrossRef]

Gauck, H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process.64(2), 143–147 (1997).
[CrossRef]

Gfroerer, T. H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process.64(2), 143–147 (1997).
[CrossRef]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Hasselbeck, M. P.

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett.86(8), 081104 (2005).
[CrossRef]

Hooft, G. W.

G. W. Hooft and C. van Opdorp, “Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab,” J. Appl. Phys.60(3), 1065–1070 (1986).
[CrossRef]

Huan, C. H. A.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Huppert, D.

D. Huppert, M. Evenor, and Y. Shapira, “Measurements of surface recombination velocity on CdS surfaces and Au interfaces,” J. Vac. Sci. Technol. A2(2), 532–533 (1984).
[CrossRef]

Imangholi, B.

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett.86(8), 081104 (2005).
[CrossRef]

Jiang, Q.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Jiang, Y.

X. Liu, R. Wang, Y. Jiang, Q. Zhang, X. Shan, and X. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys.108(5), 054310 (2010).
[CrossRef]

Ju, X.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Khurgin, J. B.

J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B77(23), 235206 (2008).
[CrossRef]

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett.98(17), 177401 (2007).
[CrossRef]

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys.100(11), 113116 (2006).
[CrossRef]

Kurtz, S.

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett.86(8), 081104 (2005).
[CrossRef]

Kwong, N. H.

G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: Theoretical study,” Phys. Rev. B76(24), 245203 (2007).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett.97(11), 117401 (2006).
[CrossRef] [PubMed]

Landsberg, P. T.

P. T. Landsberg and M. J. Adams, “Radiative and Auger processes in semiconductors,” J. Lumin.7, 3–34 (1973).
[CrossRef]

Li, D. H.

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

D. H. Li, J. Zhang, and Q. H. Xiong, “Surface Depletion Induced Quantum Confinement in CdS Nanobelts,” ACS Nano6(6), 5283–5290 (2012).
[CrossRef] [PubMed]

D. H. Li, J. Zhang, Q. Zhang, and Q. H. Xiong, “Electric-Field-Dependent Photoconductivity in CdS Nanowires and Nanobelts: Exciton Ionization, Franz-Keldysh, and Stark Effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

Liu, B.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Liu, X.

X. Liu, R. Wang, Y. Jiang, Q. Zhang, X. Shan, and X. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys.108(5), 054310 (2010).
[CrossRef]

Lu, Y.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Melgaard, S. D.

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

Potemski, M.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett.75(9), 1258–1260 (1999).
[CrossRef]

Pringsheim, P.

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Zeitschrift für Physik A Hadrons and Nuclei 57, 739–746 (1929).

Qiu, X.

X. Liu, R. Wang, Y. Jiang, Q. Zhang, X. Shan, and X. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys.108(5), 054310 (2010).
[CrossRef]

Renn, M. J.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process.64(2), 143–147 (1997).
[CrossRef]

Rupper, G.

G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: Theoretical study,” Phys. Rev. B76(24), 245203 (2007).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett.97(11), 117401 (2006).
[CrossRef] [PubMed]

Seletskiy, D. V.

Shan, X.

X. Liu, R. Wang, Y. Jiang, Q. Zhang, X. Shan, and X. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys.108(5), 054310 (2010).
[CrossRef]

Shapira, Y.

D. Huppert, M. Evenor, and Y. Shapira, “Measurements of surface recombination velocity on CdS surfaces and Au interfaces,” J. Vac. Sci. Technol. A2(2), 532–533 (1984).
[CrossRef]

Sheik-Bahae, M.

D. A. Bender, J. G. Cederberg, C. Wang, and M. Sheik-Bahae, “Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling,” Appl. Phys. Lett.102(25), 252102 (2013).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110 K,” Opt. Express19(19), 18229–18236 (2011).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express18(17), 18061–18066 (2010).
[CrossRef] [PubMed]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev.3(1-2), 67–84 (2009).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical Refrigeration,” Nat. Photonics1(12), 693–699 (2007).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett.86(8), 081104 (2005).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett.92(24), 247403 (2004).
[CrossRef] [PubMed]

Sie, E. J.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Sum, T. C.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Sun, H.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Tonelli, M.

van Opdorp, C.

G. W. Hooft and C. van Opdorp, “Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab,” J. Appl. Phys.60(3), 1065–1070 (1986).
[CrossRef]

Vina, L.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett.75(9), 1258–1260 (1999).
[CrossRef]

Wang, C.

D. A. Bender, J. G. Cederberg, C. Wang, and M. Sheik-Bahae, “Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling,” Appl. Phys. Lett.102(25), 252102 (2013).
[CrossRef]

Wang, J.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Wang, R.

X. Liu, R. Wang, Y. Jiang, Q. Zhang, X. Shan, and X. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys.108(5), 054310 (2010).
[CrossRef]

Weimann, G.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett.75(9), 1258–1260 (1999).
[CrossRef]

Wyder, P.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett.75(9), 1258–1260 (1999).
[CrossRef]

Xiong, Q. H.

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

D. H. Li, J. Zhang, and Q. H. Xiong, “Surface Depletion Induced Quantum Confinement in CdS Nanobelts,” ACS Nano6(6), 5283–5290 (2012).
[CrossRef] [PubMed]

D. H. Li, J. Zhang, Q. Zhang, and Q. H. Xiong, “Electric-Field-Dependent Photoconductivity in CdS Nanowires and Nanobelts: Exciton Ionization, Franz-Keldysh, and Stark Effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Xu, X.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

D. H. Li, J. Zhang, Q. Zhang, and Q. H. Xiong, “Electric-Field-Dependent Photoconductivity in CdS Nanowires and Nanobelts: Exciton Ionization, Franz-Keldysh, and Stark Effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

D. H. Li, J. Zhang, and Q. H. Xiong, “Surface Depletion Induced Quantum Confinement in CdS Nanobelts,” ACS Nano6(6), 5283–5290 (2012).
[CrossRef] [PubMed]

Zhang, Q.

D. H. Li, J. Zhang, Q. Zhang, and Q. H. Xiong, “Electric-Field-Dependent Photoconductivity in CdS Nanowires and Nanobelts: Exciton Ionization, Franz-Keldysh, and Stark Effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

X. Liu, R. Wang, Y. Jiang, Q. Zhang, X. Shan, and X. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys.108(5), 054310 (2010).
[CrossRef]

Zhao, Y.

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

ACS Nano (2)

D. H. Li, J. Zhang, and Q. H. Xiong, “Surface Depletion Induced Quantum Confinement in CdS Nanobelts,” ACS Nano6(6), 5283–5290 (2012).
[CrossRef] [PubMed]

X. Xu, Y. Zhao, E. J. Sie, Y. Lu, B. Liu, S. A. Ekahana, X. Ju, Q. Jiang, J. Wang, H. Sun, T. C. Sum, C. H. A. Huan, Y. P. Feng, and Q. H. Xiong, “Dynamics of Bound Exciton Complexes in CdS Nanobelts,” ACS Nano5(5), 3660–3669 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

B. Imangholi, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Effects of epitaxial lift-off on interface recombination and laser cooling in GaInP/GaAs heterostructures,” Appl. Phys. Lett.86(8), 081104 (2005).
[CrossRef]

D. A. Bender, J. G. Cederberg, C. Wang, and M. Sheik-Bahae, “Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling,” Appl. Phys. Lett.102(25), 252102 (2013).
[CrossRef]

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett.75(9), 1258–1260 (1999).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process.64(2), 143–147 (1997).
[CrossRef]

J. Appl. Phys. (3)

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys.100(11), 113116 (2006).
[CrossRef]

G. W. Hooft and C. van Opdorp, “Determination of bulk minority-carrier lifetime and surface/interface recombination velocity from photoluminescence decay of a semi-infinite semiconductor slab,” J. Appl. Phys.60(3), 1065–1070 (1986).
[CrossRef]

X. Liu, R. Wang, Y. Jiang, Q. Zhang, X. Shan, and X. Qiu, “Thermal conductivity measurement of individual CdS nanowires using microphotoluminescence spectroscopy,” J. Appl. Phys.108(5), 054310 (2010).
[CrossRef]

J. Lumin. (1)

P. T. Landsberg and M. J. Adams, “Radiative and Auger processes in semiconductors,” J. Lumin.7, 3–34 (1973).
[CrossRef]

J. Vac. Sci. Technol. A (1)

D. Huppert, M. Evenor, and Y. Shapira, “Measurements of surface recombination velocity on CdS surfaces and Au interfaces,” J. Vac. Sci. Technol. A2(2), 532–533 (1984).
[CrossRef]

Laser Photon. Rev. (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev.3(1-2), 67–84 (2009).
[CrossRef]

Nano Lett. (1)

D. H. Li, J. Zhang, Q. Zhang, and Q. H. Xiong, “Electric-Field-Dependent Photoconductivity in CdS Nanowires and Nanobelts: Exciton Ionization, Franz-Keldysh, and Stark Effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. Sheik-Bahae and R. I. Epstein, “Optical Refrigeration,” Nat. Photonics1(12), 693–699 (2007).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics4(3), 161–164 (2010).
[CrossRef]

Nature (2)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature377(6549), 500–503 (1995).
[CrossRef]

J. Zhang, D. H. Li, R. J. Chen, and Q. H. Xiong, “Laser cooling of a semiconductor by 40 kelvin,” Nature493(7433), 504–508 (2013).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (2)

G. Rupper, N. H. Kwong, and R. Binder, “Optical refrigeration of GaAs: Theoretical study,” Phys. Rev. B76(24), 245203 (2007).
[CrossRef]

J. B. Khurgin, “Role of bandtail states in laser cooling of semiconductors,” Phys. Rev. B77(23), 235206 (2008).
[CrossRef]

Phys. Rev. Lett. (3)

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett.97(11), 117401 (2006).
[CrossRef] [PubMed]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett.92(24), 247403 (2004).
[CrossRef] [PubMed]

J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett.98(17), 177401 (2007).
[CrossRef]

Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung (1)

P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Zeitschrift für Physik A Hadrons and Nuclei 57, 739–746 (1929).

Other (3)

R. I. Epstein and M. Sheik-Bahae, Optical Refrigeration (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009).

B. Imangholi, “Investigation of laser cooling in semiconductors,” (The University of New Mexico, United States - New Mexico., 2006).

U. Rossler, Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group III: Condensed Matter. Semiconductors: II–VI and I–VII compounds, Vol. 41B (Springer: Berlin Heidelberg, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The thickness dependent photoconductivity gain at room temperature. To compare between them, all spectra are normalized by their corresponding maximum value. (b) To clearly see the band tail region, the band tail region of (a) is plotted again in the logarithm scale. The vertical gray line indicates the position of 532 nm. (c) The thickness dependent anti-Stokes luminescence excited by a 7 mW 532 nm laser at room temperature for different thickness CdS nanobelts. Inset: the integrated emission intensity versus the thickness of the nanobelts extracted from (c). “/5” denotes that intensity of those spectra has been divided by 5.

Fig. 2
Fig. 2

(a) The thickness dependent mean emission energy at room temperature for a 7 mW 532 nm laser pumping. (b) The calculated thickness dependent external quantum coefficient η exe at room temperature based on Eq. (8).

Fig. 3
Fig. 3

The calculated thickness dependent cooling power (a) based on Eq. (3) and normalized temperature change (b) based on Eq. (10) for a 7 mW 532 nm laser pumping at room temperature. Inset: an SEM image of a single CdS nanobelt suspended on a SiO2/Si substrate. The scale bar is 1 μm.

Fig. 4
Fig. 4

(a) Evolution of PPLT spectra of a 95 nm CdS nanobelts pumped by a 7 mW 532 nm laser starting from 290 K. (b) and (c) Evolution of PPLT spectra of a 43 nm CdS nanobelts starting from 290 K pumped by a 6.4 mW 532 nm laser (b) and a 4.5 mW 514 nm laser (c). (d) The local temperature change versus time pumped by two different laser lines for two CdS nanobelts. The data are extracted from Fig. 4 (a)-(c). (e) The thickness dependent normalized temperature change for a 7 mW 532 nm laser pumping starting at room temperature. The red dots represent the experimental date and the blue triangles denote the calculated results.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η c (hv,T)= η exe η abs v ¯ f (T) v 1= α(v,T)t P 0 [ η exe η abs h v ¯ f (T)hv ] α(v,T)t P 0 hv
η exe = η e B N 2 AN+ η e B N 2 +C N 3
P cool = η c α(v,T)t P 0 = α(v,T)t P 0 [ η exe η abs h v ¯ f (T)hv ] hv
d η exe dN =0 N opt = A C
η exe ( N opt )=12 AC η e B ,
A s = S t
η e = η 0 exp( α eff t)
η exe =12 2SC t B η 0 exp( α eff t)
P thermal =2kM ΔT ΔL
ΔT P 0 = KG(ν,T)[ η exe η abs h v ¯ f (T)hv ]ΔL 2hvkM

Metrics