Abstract

The use and advantages of applying balanced-detection (BD) operation method to high speed spectral domain optical coherence tomography (SDOCT) are presented in this study, which we believe is the first such demonstration. Compared to conventional SDOCT, BD-SDOCT provides two unique advantages. First, the method can suppress background noise and autocorrelation artifacts in biological tissues. Second, it is a power-efficient method which is particularly helpful for high speed SDOCT to eliminate random intensity noise and to achieve shot noise limited detection. This performance allows in vivo three-dimensional tissue visualization with high imaging quality and high speed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express12(10), 2112–2119 (2004).
    [CrossRef] [PubMed]
  3. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett.21(22), 1839–1841 (1996).
    [CrossRef] [PubMed]
  4. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
    [CrossRef] [PubMed]
  5. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
    [CrossRef] [PubMed]
  6. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett.27(20), 1800–1802 (2002).
    [CrossRef] [PubMed]
  7. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express14(3), 1145–1160 (2006).
    [CrossRef] [PubMed]
  8. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express15(17), 10832–10841 (2007).
    [CrossRef] [PubMed]
  9. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express17(22), 19486–19500 (2009).
    [CrossRef] [PubMed]
  10. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt.9(1), 47–74 (2004).
    [CrossRef] [PubMed]
  11. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
    [CrossRef] [PubMed]
  12. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
    [CrossRef] [PubMed]
  13. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  14. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  15. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006).
    [CrossRef] [PubMed]
  16. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  17. G. L. Abbas, V. W. S. Chan, and T. K. Yee, “A dual-detector optical heterodyne receiver for local oscillator noise suppression,” J. Lightwave Technol.3(5), 1110–1122 (1985).
    [CrossRef]
  18. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett.24(21), 1484–1486 (1999).
    [CrossRef] [PubMed]
  19. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron.34(7), 1098–1108 (1998).
    [CrossRef]
  20. A. G. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt.39(1), 173–182 (2000).
    [CrossRef] [PubMed]
  21. T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys.38(Part 1, No. 10), 6133–6137 (1999).
    [CrossRef]
  22. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  23. E. G. Ötzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13, 10217–10229 (2005).
  24. R. C. Haskell, D. Liao, A. E. Pivonka, T. L. Bell, B. R. Haberle, B. M. Hoeling, and D. C. Petersen, “Role of beat noise in limiting the sensitivity of optical coherence tomography,” J. Opt. Soc. Am. A23(11), 2747–2755 (2006).
    [CrossRef] [PubMed]
  25. M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(Suppl 4), iv43–iv46 (2006).
    [CrossRef] [PubMed]
  26. H. A. Moneib, S. A. M. Salem, D. G. Aly, H. T. M. Khedr, H. A. Wafaey, and H. E. Hassan, “Assessment of serum vascular endothelial growth factor and nail fold capillaroscopy changes in systemic lupus erythematosus with and without cutaneous manifestations,” J. Dermatol.39(1), 52–57 (2012).
    [CrossRef] [PubMed]
  27. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt.12(4), 041205 (2007).
    [CrossRef] [PubMed]

2012 (1)

H. A. Moneib, S. A. M. Salem, D. G. Aly, H. T. M. Khedr, H. A. Wafaey, and H. E. Hassan, “Assessment of serum vascular endothelial growth factor and nail fold capillaroscopy changes in systemic lupus erythematosus with and without cutaneous manifestations,” J. Dermatol.39(1), 52–57 (2012).
[CrossRef] [PubMed]

2011 (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (2)

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express15(17), 10832–10841 (2007).
[CrossRef] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt.12(4), 041205 (2007).
[CrossRef] [PubMed]

2006 (4)

2005 (1)

2004 (4)

2003 (2)

2002 (1)

2000 (1)

1999 (3)

1998 (1)

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron.34(7), 1098–1108 (1998).
[CrossRef]

1997 (1)

1996 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1985 (1)

G. L. Abbas, V. W. S. Chan, and T. K. Yee, “A dual-detector optical heterodyne receiver for local oscillator noise suppression,” J. Lightwave Technol.3(5), 1110–1122 (1985).
[CrossRef]

Abbas, G. L.

G. L. Abbas, V. W. S. Chan, and T. K. Yee, “A dual-detector optical heterodyne receiver for local oscillator noise suppression,” J. Lightwave Technol.3(5), 1110–1122 (1985).
[CrossRef]

Adler, D. C.

Aguirre, A.

Aly, D. G.

H. A. Moneib, S. A. M. Salem, D. G. Aly, H. T. M. Khedr, H. A. Wafaey, and H. E. Hassan, “Assessment of serum vascular endothelial growth factor and nail fold capillaroscopy changes in systemic lupus erythematosus with and without cutaneous manifestations,” J. Dermatol.39(1), 52–57 (2012).
[CrossRef] [PubMed]

Apolonski, A.

Bajraszewski, T.

Bell, T. L.

Bilinsky, I. P.

Bizheva, K.

Boppart, S. A.

Bornemann, J.

Bouma, B. E.

Cable, A.

Cense, B.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt.12(4), 041205 (2007).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

Chan, V. W. S.

G. L. Abbas, V. W. S. Chan, and T. K. Yee, “A dual-detector optical heterodyne receiver for local oscillator noise suppression,” J. Lightwave Technol.3(5), 1110–1122 (1985).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt.12(4), 041205 (2007).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

Chen, Y.

Chinn, S. R.

Choma, M. A.

Cimalla, P.

Cuevas, M.

Cutolo, M.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

de Boer, J. F.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt.12(4), 041205 (2007).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

Drexler, W.

Fercher, A.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Först, M.

Fujimoto, J.

Fujimoto, J. G.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006).
[CrossRef] [PubMed]

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express12(10), 2112–2119 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett.21(22), 1839–1841 (1996).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Golubovic, B.

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grychtol, P.

Haberle, B. R.

Haskell, R. C.

Hassan, H. E.

H. A. Moneib, S. A. M. Salem, D. G. Aly, H. T. M. Khedr, H. A. Wafaey, and H. E. Hassan, “Assessment of serum vascular endothelial growth factor and nail fold capillaroscopy changes in systemic lupus erythematosus with and without cutaneous manifestations,” J. Dermatol.39(1), 52–57 (2012).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hermes, B.

Hitzenberger, C. K.

Hoeling, B. M.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Ippen, E. P.

Izatt, J. A.

Jiang, J.

Kärtner, F. X.

Khedr, H. T. M.

H. A. Moneib, S. A. M. Salem, D. G. Aly, H. T. M. Khedr, H. A. Wafaey, and H. E. Hassan, “Assessment of serum vascular endothelial growth factor and nail fold capillaroscopy changes in systemic lupus erythematosus with and without cutaneous manifestations,” J. Dermatol.39(1), 52–57 (2012).
[CrossRef] [PubMed]

Knight, J. C.

Ko, T. H.

Koch, E.

Kopf, D.

Kray, S.

Kurz, H.

Le, T.

Lederer, M.

Leitgeb, R.

Leitgeb, R. A.

Li, X. D.

Liao, D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, L.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Mamedov, D.

Mehner, M.

Mitsui, T.

T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys.38(Part 1, No. 10), 6133–6137 (1999).
[CrossRef]

Moneib, H. A.

H. A. Moneib, S. A. M. Salem, D. G. Aly, H. T. M. Khedr, H. A. Wafaey, and H. E. Hassan, “Assessment of serum vascular endothelial growth factor and nail fold capillaroscopy changes in systemic lupus erythematosus with and without cutaneous manifestations,” J. Dermatol.39(1), 52–57 (2012).
[CrossRef] [PubMed]

Morgner, U.

Mujat, M.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt.12(4), 041205 (2007).
[CrossRef] [PubMed]

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Nassif, N.

Nishizawa, N.

Ötzinger, E. G.

Paolino, S.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

Park, B. H.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt.12(4), 041205 (2007).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

Petersen, D. C.

Pircher, M.

Pitris, C.

Pivonka, A. E.

Pizzorni, C.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

Podoleanu, A. G.

Potsaid, B.

Povazay, B.

Prokhorov, V.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rollins, A. M.

Russell, P. St. J.

Salem, S. A. M.

H. A. Moneib, S. A. M. Salem, D. G. Aly, H. T. M. Khedr, H. A. Wafaey, and H. E. Hassan, “Assessment of serum vascular endothelial growth factor and nail fold capillaroscopy changes in systemic lupus erythematosus with and without cutaneous manifestations,” J. Dermatol.39(1), 52–57 (2012).
[CrossRef] [PubMed]

Sarunic, M. V.

Sattmann, H.

Scherzer, E.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Secchi, M. E.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

Seitz, W.

Shidlovski, V.

Spöler, F.

Srinivasan, V. J.

Stingl, A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sulli, A.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Takada, K.

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron.34(7), 1098–1108 (1998).
[CrossRef]

Tearney, G. J.

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Unterhuber, A.

Vetterlein, M.

Wadsworth, W. J.

Wafaey, H. A.

H. A. Moneib, S. A. M. Salem, D. G. Aly, H. T. M. Khedr, H. A. Wafaey, and H. E. Hassan, “Assessment of serum vascular endothelial growth factor and nail fold capillaroscopy changes in systemic lupus erythematosus with and without cutaneous manifestations,” J. Dermatol.39(1), 52–57 (2012).
[CrossRef] [PubMed]

Walther, J.

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Yakubovich, S.

Yang, C. H.

Yee, T. K.

G. L. Abbas, V. W. S. Chan, and T. K. Yee, “A dual-detector optical heterodyne receiver for local oscillator noise suppression,” J. Lightwave Technol.3(5), 1110–1122 (1985).
[CrossRef]

Yun, S. H.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron.34(7), 1098–1108 (1998).
[CrossRef]

J. Biomed. Opt. (2)

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt.9(1), 47–74 (2004).
[CrossRef] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt.12(4), 041205 (2007).
[CrossRef] [PubMed]

J. Dermatol. (1)

H. A. Moneib, S. A. M. Salem, D. G. Aly, H. T. M. Khedr, H. A. Wafaey, and H. E. Hassan, “Assessment of serum vascular endothelial growth factor and nail fold capillaroscopy changes in systemic lupus erythematosus with and without cutaneous manifestations,” J. Dermatol.39(1), 52–57 (2012).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

G. L. Abbas, V. W. S. Chan, and T. K. Yee, “A dual-detector optical heterodyne receiver for local oscillator noise suppression,” J. Lightwave Technol.3(5), 1110–1122 (1985).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys.38(Part 1, No. 10), 6133–6137 (1999).
[CrossRef]

Nat. Med. (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011).
[CrossRef] [PubMed]

Opt. Express (9)

T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express12(10), 2112–2119 (2004).
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
[CrossRef] [PubMed]

E. G. Ötzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13, 10217–10229 (2005).

A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express14(3), 1145–1160 (2006).
[CrossRef] [PubMed]

F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express15(17), 10832–10841 (2007).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express17(22), 19486–19500 (2009).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

Opt. Lett. (7)

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
[CrossRef] [PubMed]

A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett.24(21), 1484–1486 (1999).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett.21(22), 1839–1841 (1996).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett.27(20), 1800–1802 (2002).
[CrossRef] [PubMed]

Rheumatology (Oxford) (1)

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Calculated SNR as a function of reference arm power for standard single detection scheme (non-BD) and BD setups. Also shown are the signal to receiver noise ratio (SNRre), signal to shot noise ratio (SNRsh), and signal to RIN ratio (SNRRIN). Different integration time indicates different CCD saturation power. (CCD well depth = 800ke-, σ r+d =456 e , λ 0 = 860nm, δ λ FWHM = 100nm, η = 0.35, sample power fixed to 0.4 μW )

Fig. 2
Fig. 2

Schematic of the UHR BD-SDOCT system. CO, collimator; DM, dichroic mirror filter; L1 and L2, lens; G, grating; PC, polarization controller; OBJ, objective lens; GS, galvanometer scanner mirror.

Fig. 3
Fig. 3

(a) interference fringes detected by the single spectrometer. (b) interference fringes detected by channel 1, channel 2, and the BD scheme (i.e. signals in channel 1 were subtracted from channel 2). (c) The zoomed-in signals in the narrow spectral interval exhibited a π phase difference between the two spectra. (d) The depth resolved signals after FFT from the BD-SDOCT (red curve) and standard single detection SDOCT (black curve) respectively.

Fig. 4
Fig. 4

Measured SNR for different reference arm power settings with a fixed sample arm power of 0.4 μW returning to the spectrometers for standard single detection scheme (non-BD) and BD setups.

Fig. 5
Fig. 5

Depth dependent decay in (a) standard single detection UHR SDOCT and in (b) UHR BD-SDOCT. (c) Depth dependent SNR measured by using the BD and single detection method. (d) Measured free-space axial resolution by using BD and single detection method.

Fig. 6
Fig. 6

OCT images of a multilayer tape and a living fish eye acquired with (a) and (c) conventional single detection UHR SDOCT, and with (b) and (d) dual detection UHR BD-SDOCT. The autocorrelation term from the mutual interference between multilayer of a tape and between cornea and the iris of the fish eye are indicated by AC.

Fig. 7
Fig. 7

OCT images of the anterior segment in a living fish eye acquired with (a) conventional single detection UHR SDOCT, and with (b) dual detection UHR BD-SDOCT. (c) The higher magnification image of the rectangular part in (b) shows the detail structures in the cornea. BM: Bowman’s membrane, F: collagen fibrils, E: cornea endothelium.

Fig. 8
Fig. 8

OCT images of a living fish head in different positions acquired with (a) conventional single detection UHR SDOCT, (b) conventional single detection UHR SDOCT with background subtraction, and (c) dual detection UHR BD-SDOCT.

Fig. 9
Fig. 9

in vivo UHR BD-SDOCT imaging of a human nail fold. (a) Schematic diagram, (b) 3D reconstruction with 2D demonstration images showing X-Z, X-Y, and Y-Z planes. Image dimensions are 2mm×2mm×1mm . G-gel; S-stratum corneum; E-Epidermis; D-Dermis; BV-Blood vessel; PCL-papillary capillary loops; BM- basement membrane; PD-papillary dermis; HD-hypodermis; SA-small artery; SV-small vein

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(k)=S(k)(1+ a(z)cos(2knz) dz+ACterms)
η 2 τ 2 (hν) 2 P sam P ref
σ noise 2 = σ r+d 2 + ητ h ν P ref + η 2 τ (hν) 2 P ref 2 τ coh
SNR=10×log( ( ητ hν ) P sam [ 1+ η hν P ref τ coh ]+ hν ητ σ r+d 2 P ref )  ( unit: dB )
SN R sh =10×log[ η P sam τ hν ]     ( unit: dB )
I diff (k)2S(k) a(z)cos(2knz) dz
SN R BD =10×log( ( ητ hν ) P sam 1+ hν ητ σ r+d 2 P ref )   ( unit: dB )

Metrics