Abstract

Luminescence imaging of semiconductor surfaces in nanometric resolution is a key to novel optoelectronic nano-devices, which requires local carrier excitation and local luminescence collection within the nanometric areas at the surfaces. However, there have not been a practical nanospectroscopies applicable to wide range of specimens. STM-cathodoluminescence (STM-CL) nanospectroscopy offers both high spatial resolution (of the order of 10 nm) and novel high carrier excitation power (up to ~1 mW), which enables local luminescence imaging of less-luminescent nano-structures. In this study, we advanced STM-CL technique by introducing a novel optical fiber probe with Cr thin film coating (Cr-FP), which was found to work as a STM probe, as an electron field-emitter for local carrier excitation, and as an alignment-free efficient local STM-CL collector which blinds luminescence after the minority carrier diffusion.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
    [CrossRef] [PubMed]
  2. Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda, and M. Ichikawa, “Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates,” Nanotechnology21(9), 095305 (2010).
    [CrossRef] [PubMed]
  3. H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264(5166), 1740–1745 (1994).
    [CrossRef] [PubMed]
  4. U. M. Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, and M. Ohtsu, “Nanometer level resolving near field optical microscope under optical feedback in the observation of a single-string deoxyribo nucleic acid,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6713–6720 (1999).
    [CrossRef]
  5. T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999).
    [CrossRef]
  6. T. Saiki, K. Matsuda, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Nano-optical probing of exciton wave-functions confined in a GaAs quantum dot,” J. Electron Microsc. (Tokyo)53(2), 193–201 (2004).
    [CrossRef] [PubMed]
  7. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
    [CrossRef]
  8. D. L. Abraham, A. Veider, Ch. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado, “Nanometer resolution in luminescence microscopy of III‐V heterostructures,” Appl. Phys. Lett.56(16), 1564–1566 (1990).
    [CrossRef]
  9. S. F. Alvarado, W. Rieß, P. F. Seidler, and P. Strohriegl, “STM-induced luminescence study of poly(p-phenylenevinylene) by conversion under ultraclean conditions,” Phys. Rev. B56, 1269–1278 (1997).
    [CrossRef]
  10. R. R. Schlittler, R. Berndt, and J. K. Gimzewski, “Photon emission scanning tunneling microscope,” J. Vac. Sci. Technol. B9(2), 573–577 (1991).
    [CrossRef]
  11. R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
    [CrossRef] [PubMed]
  12. K. Ito, S. Ohyama, Y. Uehara, and S. Ushioda, “STM light emission spectra of individual nanostructures of porous Si,” Surf. Sci.363(1-3), 423–427 (1996).
    [CrossRef]
  13. T. Tsuruoka, R. Tanimoto, Y. Ohizumi, R. Arafune, and S. Ushioda, “Electron transport in the barriers of AlGaAs/GaAs quantum well structures observed by scanning-tunneling-microscope light-emission spectroscopy,” Appl. Phys. Lett.80(20), 3748–3750 (2002).
    [CrossRef]
  14. L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994).
    [CrossRef]
  15. U. Håkanson, M. K.-J. Johansson, M. Holm, C. Pryor, L. Samuelson, W. Seifert, and M.-E. Pistol, “Photon mapping of quantum dots using a scanning tunneling microscope,” Appl. Phys. Lett.81(23), 4443–4445 (2002).
    [CrossRef]
  16. I. Chizhov, G. Lee, R. F. Willis, D. Lubyshev, and D. L. Miller, “Luminescence from GaAs (100) surface excited by a scanning tunneling microscope,” J. Vac. Sci. Technol. A15(3), 1432–1437 (1997).
    [CrossRef]
  17. T. Murashita, “Novel conductive transparent tip for low-temperature tunneling-electron luminescence microscopy using tip collection,” J. Vac. Sci. Technol. B15(1), 32–37 (1997).
    [CrossRef]
  18. T. Murashita, “Optical system for tunneling-electron luminescence spectro/microscopes with conductive-transparent tips in ultrahigh vacuums,” J. Vac. Sci. Technol. B17(1), 22–28 (1999).
    [CrossRef]
  19. T. Murashita and K. Tateno, “Direct measurement of sub-10 nm-level lateral distribution in tunneling-electron luminescence intensity on a cross-sectional 50-nm-thick AlAs layer by using a conductive transparent tip,” Appl. Phys. Lett.78(25), 3995–3997 (2001).
    [CrossRef]
  20. I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Optical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope,” Nanotechnology20(14), 145706 (2009).
    [CrossRef] [PubMed]
  21. D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Tech.64(5-6), 403–414 (2004).
    [CrossRef] [PubMed]
  22. D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunnelling electrons from a p-type GaAs(110) surface observed at near-field by a conductive optical fiber probe,” Nanotechnology15(6), S355–S361 (2004).
    [CrossRef]
  23. M. Gu, C. Syrykh, A. Halimaoui, Ph. Dumas, and F. Salvan, “Low-energy scanning cathodoluminescence spectroscopy and microscopy of porous silicon layers,” J. Lumin.57(1-6), 315–319 (1993).
    [CrossRef]
  24. D. D. D. Ma, S.-T. Lee, P. Mueller, and S. F. Alvarado, “Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires,” Nano Lett.6(5), 926–929 (2006).
    [CrossRef] [PubMed]
  25. E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence,” Appl. Phys. Lett.99(15), 151910 (2011).
    [CrossRef]
  26. K. Watanabe, Y. Nakamura, and M. Ichikawa, “Measurements of local optical properties of Si-doped GaAs (110) surfaces using modulation scanning tunneling microscope cathodoluminescence spectroscopy,” J. Vac. Sci. Technol. B26(1), 195–200 (2008).
    [CrossRef]
  27. K. Watanabe, Y. Nakamura, and M. Ichikawa, “Spatial resolution of imaging contaminations on the GaAs surface by scanning tunneling microscope-cathodoluminescence spectroscopy,” Appl. Surf. Sci.254(23), 7737–7741 (2008).
    [CrossRef]
  28. K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope–cathodoluminescence measurement of the GaAs/AlGaAs heterostructure,” J. Vac. Sci. Technol. B27(4), 1874–1880 (2009).
    [CrossRef]
  29. T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys.31(Part 2, No. 9A), L1302–L1304 (1992).
    [CrossRef]
  30. T. Pangaribuan, S. Jiang, and M. Ohtsu, “Two-step etching method for fabrication of fiber probe for photon scanning tunneling microscope,” Electron. Lett.29(22), 1978–1979 (1993).
    [CrossRef]
  31. K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope-based local electroluminescence spectroscopy of p-AlGaAs/i-GaAs/n-AlGaAs double heterostructure,” J. Vac. Sci. Technol. B30(2), 021802 (2012).
    [CrossRef]
  32. K. Watanabe, Y. Nakamura, M. Ichikawa, S. Kuboya, R. Katayama, and K. Onabe, “Development of novel system combining scanning tunneling microscope-based cathodoluminescence and electroluminescence nanospectroscopies,” Jpn. J. Appl. Phys.50(8), 08LB18 (2011).
    [CrossRef]
  33. D. Hone, B. Muhlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett.33(2), 203–204 (1978).
    [CrossRef]

2012 (1)

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope-based local electroluminescence spectroscopy of p-AlGaAs/i-GaAs/n-AlGaAs double heterostructure,” J. Vac. Sci. Technol. B30(2), 021802 (2012).
[CrossRef]

2011 (2)

K. Watanabe, Y. Nakamura, M. Ichikawa, S. Kuboya, R. Katayama, and K. Onabe, “Development of novel system combining scanning tunneling microscope-based cathodoluminescence and electroluminescence nanospectroscopies,” Jpn. J. Appl. Phys.50(8), 08LB18 (2011).
[CrossRef]

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence,” Appl. Phys. Lett.99(15), 151910 (2011).
[CrossRef]

2010 (1)

Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda, and M. Ichikawa, “Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates,” Nanotechnology21(9), 095305 (2010).
[CrossRef] [PubMed]

2009 (2)

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Optical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope,” Nanotechnology20(14), 145706 (2009).
[CrossRef] [PubMed]

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope–cathodoluminescence measurement of the GaAs/AlGaAs heterostructure,” J. Vac. Sci. Technol. B27(4), 1874–1880 (2009).
[CrossRef]

2008 (2)

K. Watanabe, Y. Nakamura, and M. Ichikawa, “Measurements of local optical properties of Si-doped GaAs (110) surfaces using modulation scanning tunneling microscope cathodoluminescence spectroscopy,” J. Vac. Sci. Technol. B26(1), 195–200 (2008).
[CrossRef]

K. Watanabe, Y. Nakamura, and M. Ichikawa, “Spatial resolution of imaging contaminations on the GaAs surface by scanning tunneling microscope-cathodoluminescence spectroscopy,” Appl. Surf. Sci.254(23), 7737–7741 (2008).
[CrossRef]

2006 (1)

D. D. D. Ma, S.-T. Lee, P. Mueller, and S. F. Alvarado, “Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires,” Nano Lett.6(5), 926–929 (2006).
[CrossRef] [PubMed]

2004 (3)

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Tech.64(5-6), 403–414 (2004).
[CrossRef] [PubMed]

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunnelling electrons from a p-type GaAs(110) surface observed at near-field by a conductive optical fiber probe,” Nanotechnology15(6), S355–S361 (2004).
[CrossRef]

T. Saiki, K. Matsuda, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Nano-optical probing of exciton wave-functions confined in a GaAs quantum dot,” J. Electron Microsc. (Tokyo)53(2), 193–201 (2004).
[CrossRef] [PubMed]

2002 (2)

T. Tsuruoka, R. Tanimoto, Y. Ohizumi, R. Arafune, and S. Ushioda, “Electron transport in the barriers of AlGaAs/GaAs quantum well structures observed by scanning-tunneling-microscope light-emission spectroscopy,” Appl. Phys. Lett.80(20), 3748–3750 (2002).
[CrossRef]

U. Håkanson, M. K.-J. Johansson, M. Holm, C. Pryor, L. Samuelson, W. Seifert, and M.-E. Pistol, “Photon mapping of quantum dots using a scanning tunneling microscope,” Appl. Phys. Lett.81(23), 4443–4445 (2002).
[CrossRef]

2001 (1)

T. Murashita and K. Tateno, “Direct measurement of sub-10 nm-level lateral distribution in tunneling-electron luminescence intensity on a cross-sectional 50-nm-thick AlAs layer by using a conductive transparent tip,” Appl. Phys. Lett.78(25), 3995–3997 (2001).
[CrossRef]

2000 (2)

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

1999 (3)

U. M. Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, and M. Ohtsu, “Nanometer level resolving near field optical microscope under optical feedback in the observation of a single-string deoxyribo nucleic acid,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6713–6720 (1999).
[CrossRef]

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999).
[CrossRef]

T. Murashita, “Optical system for tunneling-electron luminescence spectro/microscopes with conductive-transparent tips in ultrahigh vacuums,” J. Vac. Sci. Technol. B17(1), 22–28 (1999).
[CrossRef]

1997 (3)

I. Chizhov, G. Lee, R. F. Willis, D. Lubyshev, and D. L. Miller, “Luminescence from GaAs (100) surface excited by a scanning tunneling microscope,” J. Vac. Sci. Technol. A15(3), 1432–1437 (1997).
[CrossRef]

T. Murashita, “Novel conductive transparent tip for low-temperature tunneling-electron luminescence microscopy using tip collection,” J. Vac. Sci. Technol. B15(1), 32–37 (1997).
[CrossRef]

S. F. Alvarado, W. Rieß, P. F. Seidler, and P. Strohriegl, “STM-induced luminescence study of poly(p-phenylenevinylene) by conversion under ultraclean conditions,” Phys. Rev. B56, 1269–1278 (1997).
[CrossRef]

1996 (1)

K. Ito, S. Ohyama, Y. Uehara, and S. Ushioda, “STM light emission spectra of individual nanostructures of porous Si,” Surf. Sci.363(1-3), 423–427 (1996).
[CrossRef]

1994 (2)

L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994).
[CrossRef]

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264(5166), 1740–1745 (1994).
[CrossRef] [PubMed]

1993 (3)

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

M. Gu, C. Syrykh, A. Halimaoui, Ph. Dumas, and F. Salvan, “Low-energy scanning cathodoluminescence spectroscopy and microscopy of porous silicon layers,” J. Lumin.57(1-6), 315–319 (1993).
[CrossRef]

T. Pangaribuan, S. Jiang, and M. Ohtsu, “Two-step etching method for fabrication of fiber probe for photon scanning tunneling microscope,” Electron. Lett.29(22), 1978–1979 (1993).
[CrossRef]

1992 (1)

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys.31(Part 2, No. 9A), L1302–L1304 (1992).
[CrossRef]

1991 (1)

R. R. Schlittler, R. Berndt, and J. K. Gimzewski, “Photon emission scanning tunneling microscope,” J. Vac. Sci. Technol. B9(2), 573–577 (1991).
[CrossRef]

1990 (1)

D. L. Abraham, A. Veider, Ch. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado, “Nanometer resolution in luminescence microscopy of III‐V heterostructures,” Appl. Phys. Lett.56(16), 1564–1566 (1990).
[CrossRef]

1978 (1)

D. Hone, B. Muhlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett.33(2), 203–204 (1978).
[CrossRef]

Abraham, D. L.

D. L. Abraham, A. Veider, Ch. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado, “Nanometer resolution in luminescence microscopy of III‐V heterostructures,” Appl. Phys. Lett.56(16), 1564–1566 (1990).
[CrossRef]

Alvarado, S. F.

D. D. D. Ma, S.-T. Lee, P. Mueller, and S. F. Alvarado, “Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires,” Nano Lett.6(5), 926–929 (2006).
[CrossRef] [PubMed]

S. F. Alvarado, W. Rieß, P. F. Seidler, and P. Strohriegl, “STM-induced luminescence study of poly(p-phenylenevinylene) by conversion under ultraclean conditions,” Phys. Rev. B56, 1269–1278 (1997).
[CrossRef]

D. L. Abraham, A. Veider, Ch. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado, “Nanometer resolution in luminescence microscopy of III‐V heterostructures,” Appl. Phys. Lett.56(16), 1564–1566 (1990).
[CrossRef]

Aoyagi, Y.

T. Saiki, K. Matsuda, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Nano-optical probing of exciton wave-functions confined in a GaAs quantum dot,” J. Electron Microsc. (Tokyo)53(2), 193–201 (2004).
[CrossRef] [PubMed]

Arafune, R.

T. Tsuruoka, R. Tanimoto, Y. Ohizumi, R. Arafune, and S. Ushioda, “Electron transport in the barriers of AlGaAs/GaAs quantum well structures observed by scanning-tunneling-microscope light-emission spectroscopy,” Appl. Phys. Lett.80(20), 3748–3750 (2002).
[CrossRef]

Arent, D. J.

D. L. Abraham, A. Veider, Ch. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado, “Nanometer resolution in luminescence microscopy of III‐V heterostructures,” Appl. Phys. Lett.56(16), 1564–1566 (1990).
[CrossRef]

Berndt, R.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

R. R. Schlittler, R. Berndt, and J. K. Gimzewski, “Photon emission scanning tunneling microscope,” J. Vac. Sci. Technol. B9(2), 573–577 (1991).
[CrossRef]

Betzig, E.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264(5166), 1740–1745 (1994).
[CrossRef] [PubMed]

Chizhov, I.

I. Chizhov, G. Lee, R. F. Willis, D. Lubyshev, and D. L. Miller, “Luminescence from GaAs (100) surface excited by a scanning tunneling microscope,” J. Vac. Sci. Technol. A15(3), 1432–1437 (1997).
[CrossRef]

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Demeester, P.

L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994).
[CrossRef]

Diener, J.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Dumas, Ph.

M. Gu, C. Syrykh, A. Halimaoui, Ph. Dumas, and F. Salvan, “Low-energy scanning cathodoluminescence spectroscopy and microscopy of porous silicon layers,” J. Lumin.57(1-6), 315–319 (1993).
[CrossRef]

Fauchet, P. M.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Fujita, D.

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Tech.64(5-6), 403–414 (2004).
[CrossRef] [PubMed]

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunnelling electrons from a p-type GaAs(110) surface observed at near-field by a conductive optical fiber probe,” Nanotechnology15(6), S355–S361 (2004).
[CrossRef]

Gaisch, R.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

Gimzewski, J. K.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

R. R. Schlittler, R. Berndt, and J. K. Gimzewski, “Photon emission scanning tunneling microscope,” J. Vac. Sci. Technol. B9(2), 573–577 (1991).
[CrossRef]

Grom, G. F.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Gu, M.

M. Gu, C. Syrykh, A. Halimaoui, Ph. Dumas, and F. Salvan, “Low-energy scanning cathodoluminescence spectroscopy and microscopy of porous silicon layers,” J. Lumin.57(1-6), 315–319 (1993).
[CrossRef]

Gustafsson, A.

L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994).
[CrossRef]

Håkanson, U.

U. Håkanson, M. K.-J. Johansson, M. Holm, C. Pryor, L. Samuelson, W. Seifert, and M.-E. Pistol, “Photon mapping of quantum dots using a scanning tunneling microscope,” Appl. Phys. Lett.81(23), 4443–4445 (2002).
[CrossRef]

Halimaoui, A.

M. Gu, C. Syrykh, A. Halimaoui, Ph. Dumas, and F. Salvan, “Low-energy scanning cathodoluminescence spectroscopy and microscopy of porous silicon layers,” J. Lumin.57(1-6), 315–319 (1993).
[CrossRef]

Harris, T. D.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264(5166), 1740–1745 (1994).
[CrossRef] [PubMed]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Hess, H. F.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264(5166), 1740–1745 (1994).
[CrossRef] [PubMed]

Holm, M.

U. Håkanson, M. K.-J. Johansson, M. Holm, C. Pryor, L. Samuelson, W. Seifert, and M.-E. Pistol, “Photon mapping of quantum dots using a scanning tunneling microscope,” Appl. Phys. Lett.81(23), 4443–4445 (2002).
[CrossRef]

Hone, D.

D. Hone, B. Muhlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett.33(2), 203–204 (1978).
[CrossRef]

Ichikawa, M.

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope-based local electroluminescence spectroscopy of p-AlGaAs/i-GaAs/n-AlGaAs double heterostructure,” J. Vac. Sci. Technol. B30(2), 021802 (2012).
[CrossRef]

K. Watanabe, Y. Nakamura, M. Ichikawa, S. Kuboya, R. Katayama, and K. Onabe, “Development of novel system combining scanning tunneling microscope-based cathodoluminescence and electroluminescence nanospectroscopies,” Jpn. J. Appl. Phys.50(8), 08LB18 (2011).
[CrossRef]

Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda, and M. Ichikawa, “Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates,” Nanotechnology21(9), 095305 (2010).
[CrossRef] [PubMed]

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope–cathodoluminescence measurement of the GaAs/AlGaAs heterostructure,” J. Vac. Sci. Technol. B27(4), 1874–1880 (2009).
[CrossRef]

K. Watanabe, Y. Nakamura, and M. Ichikawa, “Spatial resolution of imaging contaminations on the GaAs surface by scanning tunneling microscope-cathodoluminescence spectroscopy,” Appl. Surf. Sci.254(23), 7737–7741 (2008).
[CrossRef]

K. Watanabe, Y. Nakamura, and M. Ichikawa, “Measurements of local optical properties of Si-doped GaAs (110) surfaces using modulation scanning tunneling microscope cathodoluminescence spectroscopy,” J. Vac. Sci. Technol. B26(1), 195–200 (2008).
[CrossRef]

Ito, K.

K. Ito, S. Ohyama, Y. Uehara, and S. Ushioda, “STM light emission spectra of individual nanostructures of porous Si,” Surf. Sci.363(1-3), 423–427 (1996).
[CrossRef]

Iyoda, T.

Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda, and M. Ichikawa, “Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates,” Nanotechnology21(9), 095305 (2010).
[CrossRef] [PubMed]

Jaramillo, R.

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence,” Appl. Phys. Lett.99(15), 151910 (2011).
[CrossRef]

Jiang, S.

T. Pangaribuan, S. Jiang, and M. Ohtsu, “Two-step etching method for fabrication of fiber probe for photon scanning tunneling microscope,” Electron. Lett.29(22), 1978–1979 (1993).
[CrossRef]

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys.31(Part 2, No. 9A), L1302–L1304 (1992).
[CrossRef]

Johansson, M. K.-J.

U. Håkanson, M. K.-J. Johansson, M. Holm, C. Pryor, L. Samuelson, W. Seifert, and M.-E. Pistol, “Photon mapping of quantum dots using a scanning tunneling microscope,” Appl. Phys. Lett.81(23), 4443–4445 (2002).
[CrossRef]

Katayama, R.

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope-based local electroluminescence spectroscopy of p-AlGaAs/i-GaAs/n-AlGaAs double heterostructure,” J. Vac. Sci. Technol. B30(2), 021802 (2012).
[CrossRef]

K. Watanabe, Y. Nakamura, M. Ichikawa, S. Kuboya, R. Katayama, and K. Onabe, “Development of novel system combining scanning tunneling microscope-based cathodoluminescence and electroluminescence nanospectroscopies,” Jpn. J. Appl. Phys.50(8), 08LB18 (2011).
[CrossRef]

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope–cathodoluminescence measurement of the GaAs/AlGaAs heterostructure,” J. Vac. Sci. Technol. B27(4), 1874–1880 (2009).
[CrossRef]

Kobayashi, Y.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Optical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope,” Nanotechnology20(14), 145706 (2009).
[CrossRef] [PubMed]

Koch, F.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Kovalev, D.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Kuboya, S.

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope-based local electroluminescence spectroscopy of p-AlGaAs/i-GaAs/n-AlGaAs double heterostructure,” J. Vac. Sci. Technol. B30(2), 021802 (2012).
[CrossRef]

K. Watanabe, Y. Nakamura, M. Ichikawa, S. Kuboya, R. Katayama, and K. Onabe, “Development of novel system combining scanning tunneling microscope-based cathodoluminescence and electroluminescence nanospectroscopies,” Jpn. J. Appl. Phys.50(8), 08LB18 (2011).
[CrossRef]

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope–cathodoluminescence measurement of the GaAs/AlGaAs heterostructure,” J. Vac. Sci. Technol. B27(4), 1874–1880 (2009).
[CrossRef]

Labbé, H. J.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Lee, G.

I. Chizhov, G. Lee, R. F. Willis, D. Lubyshev, and D. L. Miller, “Luminescence from GaAs (100) surface excited by a scanning tunneling microscope,” J. Vac. Sci. Technol. A15(3), 1432–1437 (1997).
[CrossRef]

Lee, S.-T.

D. D. D. Ma, S.-T. Lee, P. Mueller, and S. F. Alvarado, “Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires,” Nano Lett.6(5), 926–929 (2006).
[CrossRef] [PubMed]

Likovich, E. M.

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence,” Appl. Phys. Lett.99(15), 151910 (2011).
[CrossRef]

Lindahl, J.

L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994).
[CrossRef]

Lockwood, D. J.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Lubyshev, D.

I. Chizhov, G. Lee, R. F. Willis, D. Lubyshev, and D. L. Miller, “Luminescence from GaAs (100) surface excited by a scanning tunneling microscope,” J. Vac. Sci. Technol. A15(3), 1432–1437 (1997).
[CrossRef]

Ma, D. D. D.

D. D. D. Ma, S.-T. Lee, P. Mueller, and S. F. Alvarado, “Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires,” Nano Lett.6(5), 926–929 (2006).
[CrossRef] [PubMed]

Malm, J.-O.

L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994).
[CrossRef]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Matsuda, K.

T. Saiki, K. Matsuda, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Nano-optical probing of exciton wave-functions confined in a GaAs quantum dot,” J. Electron Microsc. (Tokyo)53(2), 193–201 (2004).
[CrossRef] [PubMed]

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999).
[CrossRef]

McCaffrey, J. P.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Meier, H. P.

D. L. Abraham, A. Veider, Ch. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado, “Nanometer resolution in luminescence microscopy of III‐V heterostructures,” Appl. Phys. Lett.56(16), 1564–1566 (1990).
[CrossRef]

Mihara, M.

T. Saiki, K. Matsuda, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Nano-optical probing of exciton wave-functions confined in a GaAs quantum dot,” J. Electron Microsc. (Tokyo)53(2), 193–201 (2004).
[CrossRef] [PubMed]

Miller, D. L.

I. Chizhov, G. Lee, R. F. Willis, D. Lubyshev, and D. L. Miller, “Luminescence from GaAs (100) surface excited by a scanning tunneling microscope,” J. Vac. Sci. Technol. A15(3), 1432–1437 (1997).
[CrossRef]

Mononobe, S.

U. M. Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, and M. Ohtsu, “Nanometer level resolving near field optical microscope under optical feedback in the observation of a single-string deoxyribo nucleic acid,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6713–6720 (1999).
[CrossRef]

Montelius, L.

L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994).
[CrossRef]

Mueller, P.

D. D. D. Ma, S.-T. Lee, P. Mueller, and S. F. Alvarado, “Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires,” Nano Lett.6(5), 926–929 (2006).
[CrossRef] [PubMed]

Muhlschlegel, B.

D. Hone, B. Muhlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett.33(2), 203–204 (1978).
[CrossRef]

Murashita, T.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Optical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope,” Nanotechnology20(14), 145706 (2009).
[CrossRef] [PubMed]

T. Murashita and K. Tateno, “Direct measurement of sub-10 nm-level lateral distribution in tunneling-electron luminescence intensity on a cross-sectional 50-nm-thick AlAs layer by using a conductive transparent tip,” Appl. Phys. Lett.78(25), 3995–3997 (2001).
[CrossRef]

T. Murashita, “Optical system for tunneling-electron luminescence spectro/microscopes with conductive-transparent tips in ultrahigh vacuums,” J. Vac. Sci. Technol. B17(1), 22–28 (1999).
[CrossRef]

T. Murashita, “Novel conductive transparent tip for low-temperature tunneling-electron luminescence microscopy using tip collection,” J. Vac. Sci. Technol. B15(1), 32–37 (1997).
[CrossRef]

Murayama, A.

Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda, and M. Ichikawa, “Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates,” Nanotechnology21(9), 095305 (2010).
[CrossRef] [PubMed]

Nair, S.

T. Saiki, K. Matsuda, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Nano-optical probing of exciton wave-functions confined in a GaAs quantum dot,” J. Electron Microsc. (Tokyo)53(2), 193–201 (2004).
[CrossRef] [PubMed]

Nakamura, Y.

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope-based local electroluminescence spectroscopy of p-AlGaAs/i-GaAs/n-AlGaAs double heterostructure,” J. Vac. Sci. Technol. B30(2), 021802 (2012).
[CrossRef]

K. Watanabe, Y. Nakamura, M. Ichikawa, S. Kuboya, R. Katayama, and K. Onabe, “Development of novel system combining scanning tunneling microscope-based cathodoluminescence and electroluminescence nanospectroscopies,” Jpn. J. Appl. Phys.50(8), 08LB18 (2011).
[CrossRef]

Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda, and M. Ichikawa, “Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates,” Nanotechnology21(9), 095305 (2010).
[CrossRef] [PubMed]

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope–cathodoluminescence measurement of the GaAs/AlGaAs heterostructure,” J. Vac. Sci. Technol. B27(4), 1874–1880 (2009).
[CrossRef]

K. Watanabe, Y. Nakamura, and M. Ichikawa, “Spatial resolution of imaging contaminations on the GaAs surface by scanning tunneling microscope-cathodoluminescence spectroscopy,” Appl. Surf. Sci.254(23), 7737–7741 (2008).
[CrossRef]

K. Watanabe, Y. Nakamura, and M. Ichikawa, “Measurements of local optical properties of Si-doped GaAs (110) surfaces using modulation scanning tunneling microscope cathodoluminescence spectroscopy,” J. Vac. Sci. Technol. B26(1), 195–200 (2008).
[CrossRef]

Narayanamurti, V.

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence,” Appl. Phys. Lett.99(15), 151910 (2011).
[CrossRef]

Niori, N.

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Tech.64(5-6), 403–414 (2004).
[CrossRef] [PubMed]

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunnelling electrons from a p-type GaAs(110) surface observed at near-field by a conductive optical fiber probe,” Nanotechnology15(6), S355–S361 (2004).
[CrossRef]

Nomura, S.

T. Saiki, K. Matsuda, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Nano-optical probing of exciton wave-functions confined in a GaAs quantum dot,” J. Electron Microsc. (Tokyo)53(2), 193–201 (2004).
[CrossRef] [PubMed]

Ohizumi, Y.

T. Tsuruoka, R. Tanimoto, Y. Ohizumi, R. Arafune, and S. Ushioda, “Electron transport in the barriers of AlGaAs/GaAs quantum well structures observed by scanning-tunneling-microscope light-emission spectroscopy,” Appl. Phys. Lett.80(20), 3748–3750 (2002).
[CrossRef]

Ohsawa, H.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys.31(Part 2, No. 9A), L1302–L1304 (1992).
[CrossRef]

Ohtsu, M.

U. M. Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, and M. Ohtsu, “Nanometer level resolving near field optical microscope under optical feedback in the observation of a single-string deoxyribo nucleic acid,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6713–6720 (1999).
[CrossRef]

T. Pangaribuan, S. Jiang, and M. Ohtsu, “Two-step etching method for fabrication of fiber probe for photon scanning tunneling microscope,” Electron. Lett.29(22), 1978–1979 (1993).
[CrossRef]

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys.31(Part 2, No. 9A), L1302–L1304 (1992).
[CrossRef]

Ohyama, S.

K. Ito, S. Ohyama, Y. Uehara, and S. Ushioda, “STM light emission spectra of individual nanostructures of porous Si,” Surf. Sci.363(1-3), 423–427 (1996).
[CrossRef]

Omi, H.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Optical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope,” Nanotechnology20(14), 145706 (2009).
[CrossRef] [PubMed]

Onabe, K.

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope-based local electroluminescence spectroscopy of p-AlGaAs/i-GaAs/n-AlGaAs double heterostructure,” J. Vac. Sci. Technol. B30(2), 021802 (2012).
[CrossRef]

K. Watanabe, Y. Nakamura, M. Ichikawa, S. Kuboya, R. Katayama, and K. Onabe, “Development of novel system combining scanning tunneling microscope-based cathodoluminescence and electroluminescence nanospectroscopies,” Jpn. J. Appl. Phys.50(8), 08LB18 (2011).
[CrossRef]

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope–cathodoluminescence measurement of the GaAs/AlGaAs heterostructure,” J. Vac. Sci. Technol. B27(4), 1874–1880 (2009).
[CrossRef]

Onishi, K.

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunnelling electrons from a p-type GaAs(110) surface observed at near-field by a conductive optical fiber probe,” Nanotechnology15(6), S355–S361 (2004).
[CrossRef]

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Tech.64(5-6), 403–414 (2004).
[CrossRef] [PubMed]

Pangaribuan, T.

T. Pangaribuan, S. Jiang, and M. Ohtsu, “Two-step etching method for fabrication of fiber probe for photon scanning tunneling microscope,” Electron. Lett.29(22), 1978–1979 (1993).
[CrossRef]

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys.31(Part 2, No. 9A), L1302–L1304 (1992).
[CrossRef]

Pfeiffer, L. N.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264(5166), 1740–1745 (1994).
[CrossRef] [PubMed]

Pistol, M.-E.

U. Håkanson, M. K.-J. Johansson, M. Holm, C. Pryor, L. Samuelson, W. Seifert, and M.-E. Pistol, “Photon mapping of quantum dots using a scanning tunneling microscope,” Appl. Phys. Lett.81(23), 4443–4445 (2002).
[CrossRef]

L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994).
[CrossRef]

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Pryor, C.

U. Håkanson, M. K.-J. Johansson, M. Holm, C. Pryor, L. Samuelson, W. Seifert, and M.-E. Pistol, “Photon mapping of quantum dots using a scanning tunneling microscope,” Appl. Phys. Lett.81(23), 4443–4445 (2002).
[CrossRef]

Rajagopalan, U. M.

U. M. Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, and M. Ohtsu, “Nanometer level resolving near field optical microscope under optical feedback in the observation of a single-string deoxyribo nucleic acid,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6713–6720 (1999).
[CrossRef]

Ramanathan, S.

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence,” Appl. Phys. Lett.99(15), 151910 (2011).
[CrossRef]

Reihl, B.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

Rieß, W.

S. F. Alvarado, W. Rieß, P. F. Seidler, and P. Strohriegl, “STM-induced luminescence study of poly(p-phenylenevinylene) by conversion under ultraclean conditions,” Phys. Rev. B56, 1269–1278 (1997).
[CrossRef]

Russell, K. J.

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence,” Appl. Phys. Lett.99(15), 151910 (2011).
[CrossRef]

Saiki, T.

T. Saiki, K. Matsuda, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Nano-optical probing of exciton wave-functions confined in a GaAs quantum dot,” J. Electron Microsc. (Tokyo)53(2), 193–201 (2004).
[CrossRef] [PubMed]

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999).
[CrossRef]

Salvan, F.

M. Gu, C. Syrykh, A. Halimaoui, Ph. Dumas, and F. Salvan, “Low-energy scanning cathodoluminescence spectroscopy and microscopy of porous silicon layers,” J. Lumin.57(1-6), 315–319 (1993).
[CrossRef]

Samuelson, L.

U. Håkanson, M. K.-J. Johansson, M. Holm, C. Pryor, L. Samuelson, W. Seifert, and M.-E. Pistol, “Photon mapping of quantum dots using a scanning tunneling microscope,” Appl. Phys. Lett.81(23), 4443–4445 (2002).
[CrossRef]

L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994).
[CrossRef]

Scalapino, D. J.

D. Hone, B. Muhlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett.33(2), 203–204 (1978).
[CrossRef]

Schlittler, R. R.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

R. R. Schlittler, R. Berndt, and J. K. Gimzewski, “Photon emission scanning tunneling microscope,” J. Vac. Sci. Technol. B9(2), 573–577 (1991).
[CrossRef]

Schneider, W. D.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

Schönenberger, Ch.

D. L. Abraham, A. Veider, Ch. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado, “Nanometer resolution in luminescence microscopy of III‐V heterostructures,” Appl. Phys. Lett.56(16), 1564–1566 (1990).
[CrossRef]

Seidler, P. F.

S. F. Alvarado, W. Rieß, P. F. Seidler, and P. Strohriegl, “STM-induced luminescence study of poly(p-phenylenevinylene) by conversion under ultraclean conditions,” Phys. Rev. B56, 1269–1278 (1997).
[CrossRef]

Seifert, W.

U. Håkanson, M. K.-J. Johansson, M. Holm, C. Pryor, L. Samuelson, W. Seifert, and M.-E. Pistol, “Photon mapping of quantum dots using a scanning tunneling microscope,” Appl. Phys. Lett.81(23), 4443–4445 (2002).
[CrossRef]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Strohriegl, P.

S. F. Alvarado, W. Rieß, P. F. Seidler, and P. Strohriegl, “STM-induced luminescence study of poly(p-phenylenevinylene) by conversion under ultraclean conditions,” Phys. Rev. B56, 1269–1278 (1997).
[CrossRef]

Sychugov, I.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Optical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope,” Nanotechnology20(14), 145706 (2009).
[CrossRef] [PubMed]

Syrykh, C.

M. Gu, C. Syrykh, A. Halimaoui, Ph. Dumas, and F. Salvan, “Low-energy scanning cathodoluminescence spectroscopy and microscopy of porous silicon layers,” J. Lumin.57(1-6), 315–319 (1993).
[CrossRef]

Takagahara, T.

T. Saiki, K. Matsuda, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Nano-optical probing of exciton wave-functions confined in a GaAs quantum dot,” J. Electron Microsc. (Tokyo)53(2), 193–201 (2004).
[CrossRef] [PubMed]

Tanimoto, R.

T. Tsuruoka, R. Tanimoto, Y. Ohizumi, R. Arafune, and S. Ushioda, “Electron transport in the barriers of AlGaAs/GaAs quantum well structures observed by scanning-tunneling-microscope light-emission spectroscopy,” Appl. Phys. Lett.80(20), 3748–3750 (2002).
[CrossRef]

Tateno, K.

T. Murashita and K. Tateno, “Direct measurement of sub-10 nm-level lateral distribution in tunneling-electron luminescence intensity on a cross-sectional 50-nm-thick AlAs layer by using a conductive transparent tip,” Appl. Phys. Lett.78(25), 3995–3997 (2001).
[CrossRef]

Tschudy, M.

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

Tsuruoka, T.

T. Tsuruoka, R. Tanimoto, Y. Ohizumi, R. Arafune, and S. Ushioda, “Electron transport in the barriers of AlGaAs/GaAs quantum well structures observed by scanning-tunneling-microscope light-emission spectroscopy,” Appl. Phys. Lett.80(20), 3748–3750 (2002).
[CrossRef]

Tsybeskov, L.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Uehara, Y.

K. Ito, S. Ohyama, Y. Uehara, and S. Ushioda, “STM light emission spectra of individual nanostructures of porous Si,” Surf. Sci.363(1-3), 423–427 (1996).
[CrossRef]

Ushioda, S.

T. Tsuruoka, R. Tanimoto, Y. Ohizumi, R. Arafune, and S. Ushioda, “Electron transport in the barriers of AlGaAs/GaAs quantum well structures observed by scanning-tunneling-microscope light-emission spectroscopy,” Appl. Phys. Lett.80(20), 3748–3750 (2002).
[CrossRef]

K. Ito, S. Ohyama, Y. Uehara, and S. Ushioda, “STM light emission spectra of individual nanostructures of porous Si,” Surf. Sci.363(1-3), 423–427 (1996).
[CrossRef]

Veider, A.

D. L. Abraham, A. Veider, Ch. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado, “Nanometer resolution in luminescence microscopy of III‐V heterostructures,” Appl. Phys. Lett.56(16), 1564–1566 (1990).
[CrossRef]

Vermeire, G.

L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994).
[CrossRef]

Watanabe, K.

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope-based local electroluminescence spectroscopy of p-AlGaAs/i-GaAs/n-AlGaAs double heterostructure,” J. Vac. Sci. Technol. B30(2), 021802 (2012).
[CrossRef]

K. Watanabe, Y. Nakamura, M. Ichikawa, S. Kuboya, R. Katayama, and K. Onabe, “Development of novel system combining scanning tunneling microscope-based cathodoluminescence and electroluminescence nanospectroscopies,” Jpn. J. Appl. Phys.50(8), 08LB18 (2011).
[CrossRef]

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope–cathodoluminescence measurement of the GaAs/AlGaAs heterostructure,” J. Vac. Sci. Technol. B27(4), 1874–1880 (2009).
[CrossRef]

K. Watanabe, Y. Nakamura, and M. Ichikawa, “Measurements of local optical properties of Si-doped GaAs (110) surfaces using modulation scanning tunneling microscope cathodoluminescence spectroscopy,” J. Vac. Sci. Technol. B26(1), 195–200 (2008).
[CrossRef]

K. Watanabe, Y. Nakamura, and M. Ichikawa, “Spatial resolution of imaging contaminations on the GaAs surface by scanning tunneling microscope-cathodoluminescence spectroscopy,” Appl. Surf. Sci.254(23), 7737–7741 (2008).
[CrossRef]

Watanabe, R.

Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda, and M. Ichikawa, “Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates,” Nanotechnology21(9), 095305 (2010).
[CrossRef] [PubMed]

West, K. W.

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264(5166), 1740–1745 (1994).
[CrossRef] [PubMed]

White, B.

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Willis, R. F.

I. Chizhov, G. Lee, R. F. Willis, D. Lubyshev, and D. L. Miller, “Luminescence from GaAs (100) surface excited by a scanning tunneling microscope,” J. Vac. Sci. Technol. A15(3), 1432–1437 (1997).
[CrossRef]

Yamada, K.

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys.31(Part 2, No. 9A), L1302–L1304 (1992).
[CrossRef]

Yoshida, K.

U. M. Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, and M. Ohtsu, “Nanometer level resolving near field optical microscope under optical feedback in the observation of a single-string deoxyribo nucleic acid,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6713–6720 (1999).
[CrossRef]

Yoshimoto, M.

U. M. Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, and M. Ohtsu, “Nanometer level resolving near field optical microscope under optical feedback in the observation of a single-string deoxyribo nucleic acid,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6713–6720 (1999).
[CrossRef]

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Appl. Phys. Lett. (7)

T. Saiki and K. Matsuda, “Near-field optical fiber probe optimized for illumination–collection hybrid mode operation,” Appl. Phys. Lett.74(19), 2773–2775 (1999).
[CrossRef]

D. L. Abraham, A. Veider, Ch. Schönenberger, H. P. Meier, D. J. Arent, and S. F. Alvarado, “Nanometer resolution in luminescence microscopy of III‐V heterostructures,” Appl. Phys. Lett.56(16), 1564–1566 (1990).
[CrossRef]

T. Tsuruoka, R. Tanimoto, Y. Ohizumi, R. Arafune, and S. Ushioda, “Electron transport in the barriers of AlGaAs/GaAs quantum well structures observed by scanning-tunneling-microscope light-emission spectroscopy,” Appl. Phys. Lett.80(20), 3748–3750 (2002).
[CrossRef]

U. Håkanson, M. K.-J. Johansson, M. Holm, C. Pryor, L. Samuelson, W. Seifert, and M.-E. Pistol, “Photon mapping of quantum dots using a scanning tunneling microscope,” Appl. Phys. Lett.81(23), 4443–4445 (2002).
[CrossRef]

T. Murashita and K. Tateno, “Direct measurement of sub-10 nm-level lateral distribution in tunneling-electron luminescence intensity on a cross-sectional 50-nm-thick AlAs layer by using a conductive transparent tip,” Appl. Phys. Lett.78(25), 3995–3997 (2001).
[CrossRef]

E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, “Narrow band defect luminescence from Al-doped ZnO probed by scanning tunneling cathodoluminescence,” Appl. Phys. Lett.99(15), 151910 (2011).
[CrossRef]

D. Hone, B. Muhlschlegel, and D. J. Scalapino, “Theory of light emission from small particle tunnel junctions,” Appl. Phys. Lett.33(2), 203–204 (1978).
[CrossRef]

Appl. Surf. Sci. (1)

K. Watanabe, Y. Nakamura, and M. Ichikawa, “Spatial resolution of imaging contaminations on the GaAs surface by scanning tunneling microscope-cathodoluminescence spectroscopy,” Appl. Surf. Sci.254(23), 7737–7741 (2008).
[CrossRef]

Electron. Lett. (1)

T. Pangaribuan, S. Jiang, and M. Ohtsu, “Two-step etching method for fabrication of fiber probe for photon scanning tunneling microscope,” Electron. Lett.29(22), 1978–1979 (1993).
[CrossRef]

J. Chem. Phys. (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

J. Electron Microsc. (Tokyo) (1)

T. Saiki, K. Matsuda, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Nano-optical probing of exciton wave-functions confined in a GaAs quantum dot,” J. Electron Microsc. (Tokyo)53(2), 193–201 (2004).
[CrossRef] [PubMed]

J. Lumin. (1)

M. Gu, C. Syrykh, A. Halimaoui, Ph. Dumas, and F. Salvan, “Low-energy scanning cathodoluminescence spectroscopy and microscopy of porous silicon layers,” J. Lumin.57(1-6), 315–319 (1993).
[CrossRef]

J. Vac. Sci. Technol. A (1)

I. Chizhov, G. Lee, R. F. Willis, D. Lubyshev, and D. L. Miller, “Luminescence from GaAs (100) surface excited by a scanning tunneling microscope,” J. Vac. Sci. Technol. A15(3), 1432–1437 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (7)

T. Murashita, “Novel conductive transparent tip for low-temperature tunneling-electron luminescence microscopy using tip collection,” J. Vac. Sci. Technol. B15(1), 32–37 (1997).
[CrossRef]

T. Murashita, “Optical system for tunneling-electron luminescence spectro/microscopes with conductive-transparent tips in ultrahigh vacuums,” J. Vac. Sci. Technol. B17(1), 22–28 (1999).
[CrossRef]

L. Samuelson, A. Gustafsson, J. Lindahl, L. Montelius, M.-E. Pistol, J.-O. Malm, G. Vermeire, and P. Demeester, “Scanning tunneling microscope and electron beam induced luminescence in quantum wires,” J. Vac. Sci. Technol. B12(4), 2521–2526 (1994).
[CrossRef]

R. R. Schlittler, R. Berndt, and J. K. Gimzewski, “Photon emission scanning tunneling microscope,” J. Vac. Sci. Technol. B9(2), 573–577 (1991).
[CrossRef]

K. Watanabe, Y. Nakamura, and M. Ichikawa, “Measurements of local optical properties of Si-doped GaAs (110) surfaces using modulation scanning tunneling microscope cathodoluminescence spectroscopy,” J. Vac. Sci. Technol. B26(1), 195–200 (2008).
[CrossRef]

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope-based local electroluminescence spectroscopy of p-AlGaAs/i-GaAs/n-AlGaAs double heterostructure,” J. Vac. Sci. Technol. B30(2), 021802 (2012).
[CrossRef]

K. Watanabe, Y. Nakamura, S. Kuboya, R. Katayama, K. Onabe, and M. Ichikawa, “Scanning tunneling microscope–cathodoluminescence measurement of the GaAs/AlGaAs heterostructure,” J. Vac. Sci. Technol. B27(4), 1874–1880 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (3)

T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, “Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,” Jpn. J. Appl. Phys.31(Part 2, No. 9A), L1302–L1304 (1992).
[CrossRef]

K. Watanabe, Y. Nakamura, M. Ichikawa, S. Kuboya, R. Katayama, and K. Onabe, “Development of novel system combining scanning tunneling microscope-based cathodoluminescence and electroluminescence nanospectroscopies,” Jpn. J. Appl. Phys.50(8), 08LB18 (2011).
[CrossRef]

U. M. Rajagopalan, S. Mononobe, K. Yoshida, M. Yoshimoto, and M. Ohtsu, “Nanometer level resolving near field optical microscope under optical feedback in the observation of a single-string deoxyribo nucleic acid,” Jpn. J. Appl. Phys.38(Part 1, No. 12A), 6713–6720 (1999).
[CrossRef]

Microsc. Res. Tech. (1)

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Tech.64(5-6), 403–414 (2004).
[CrossRef] [PubMed]

Nano Lett. (1)

D. D. D. Ma, S.-T. Lee, P. Mueller, and S. F. Alvarado, “Scanning tunneling microscope excited cathodoluminescence from ZnS nanowires,” Nano Lett.6(5), 926–929 (2006).
[CrossRef] [PubMed]

Nanotechnology (3)

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunnelling electrons from a p-type GaAs(110) surface observed at near-field by a conductive optical fiber probe,” Nanotechnology15(6), S355–S361 (2004).
[CrossRef]

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Optical and electrical characterization at the nanoscale with a transparent probe of a scanning tunnelling microscope,” Nanotechnology20(14), 145706 (2009).
[CrossRef] [PubMed]

Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda, and M. Ichikawa, “Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates,” Nanotechnology21(9), 095305 (2010).
[CrossRef] [PubMed]

Nature (1)

G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbé, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, “Ordering and self-organization in nanocrystalline silicon,” Nature407(6802), 358–361 (2000).
[CrossRef] [PubMed]

Phys. Rev. B (1)

S. F. Alvarado, W. Rieß, P. F. Seidler, and P. Strohriegl, “STM-induced luminescence study of poly(p-phenylenevinylene) by conversion under ultraclean conditions,” Phys. Rev. B56, 1269–1278 (1997).
[CrossRef]

Science (2)

H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, “Near-field spectroscopy of the quantum constituents of a luminescent system,” Science264(5166), 1740–1745 (1994).
[CrossRef] [PubMed]

R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, “Photon emission at molecular resolution induced by a scanning tunneling microscope,” Science262(5138), 1425–1427 (1993).
[CrossRef] [PubMed]

Surf. Sci. (1)

K. Ito, S. Ohyama, Y. Uehara, and S. Ushioda, “STM light emission spectra of individual nanostructures of porous Si,” Surf. Sci.363(1-3), 423–427 (1996).
[CrossRef]

Supplementary Material (1)

» Media 1: PDF (306 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of FP STM-CL system equipped with conventional twin-lens optics. We collected the luminescence at the specimen surface either via the twin-lens optics and the quartz viewport or via the conductive optical FP and the optical fiber STM scanner. Then it was transferred through an optical fiber cable to a monochromator and finally detected by a (Cs)GaAs photomultiplier tube with photon counting units. Our system also equipped a He-Ne laser (633 nm, beam power ~5 mW, beam diameter ~0.3 mm) and optics, which enabled referential PL spectroscopy (not shown). SEM is also equipped for the coarse alignment between the conductive FP and the specimen surface.

Fig. 2
Fig. 2

Cr-FP micrographs and its properties as a STM probe and an electron field-emitter. (a) low- and (b) high-magnification SEM micrographs showing half-cone angle θ = 51° and tip curvature radius of r < 20 nm; (c) STM image of Si (111) 7 × 7 surface structure using Cr-FP at VT = 2.0 V and IT = 0.1 nA under STM constant-current mode; (d) time sequence of IT at d = 113 nm and VT = 156 V under electron field-emission mode; (e) FEEB irradiation assuming radial electron emission from point emitter at Cr- FP apex; (f) STM image for IT = 50 nA with (d, VT, tESD) = (70 nm, 122 V, 41.2 s); (g) STM image for IT = 50 nA with (d, VT, tESD) = (133 nm, 160 V, 95.5 s).

Fig. 3
Fig. 3

(a) Evaluation of the agreement between DEB and DESD by profiling GaAs STM-CL (λ0 = 860 nm) across p-GaAs / p-AlGaAs hetero-junction at DESD = 100 nm; (b) STM-CL intensity profile; (c) Evaluation of θ = 51° FP light collection area with p-AlGaAs / i-GaAs / n-AlGaAs double-heterostructure cross-section with 100-nm-thick active layer under LED forward voltage and Cr-FP in STM mode; (d) EL intensity profile; (e) Room temperature luminescence spectra of Zn-doped p-GaAs (110) surface normalized by excitation power: He-Ne laser PL spectra collected by twin-lens optics [PL (Lens)], STM-CL spectra collected by twin-lens optics [STM-CL (Lens)] and Cr-FP [STM-CL (FP)]. Both STM-CL spectra were taken with the same Cr-FP in the inset of (e). (f) STM-CL peak intensity for varying FEEB excitation power; (g) STM-CL intensity normalized by FEEB excitation power.

Metrics