Abstract

Fano resonance (FR) within the transmission spectrum is demonstrated in the near infrared (NIR) region using elliptical nanoholes array (ENA) embedding through metal-dielectric-metal (MDM) layers. For the symmetric MDM-ENA, it has been shown that a FR can be excited by the normally incident light. This FR response is attributed to the interplay between the bright modes and dark modes, where the bright modes originate from the electric resonance (localized surface plasmon resonance) caused by the ENA and the dark modes are due to the magnetic resonance (inductive-capacitive resonance) induced by the MDM multilayers. Displacement of the elliptical nanoholes from their centers breaks the structural symmetry to excite a double FR as a result of the coherent interaction of the electric resonance with two splitting sub-magnetic resonances at different wavelengths. Moreover,the degree of the asymmetry allows for the tuning of the amplitude and bandwidth of the double FR window. The sensitivity to the slight variations of the dielectric environment has been calculated and yields a figure-of-merit of 0.8RIU−1 for the symmetric MDM-ENA and 3.0RIU−1 for the asymmetric MDM-ENA.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. C. W. Qiu, A. Akbarzadeh, T. C. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys.14(3), 033024 (2012).
    [CrossRef]
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
    [CrossRef]
  4. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  10. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
    [CrossRef] [PubMed]
  11. N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
    [CrossRef]
  12. Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express1(3), 391–399 (2011).
    [CrossRef]
  13. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
    [CrossRef] [PubMed]
  14. M. Pu, C. Hu, C. Huang, C. Wang, Z. Zhao, Y. Wang, and X. Luo, “Investigation of Fano resonance in planar metamaterial with perturbed periodicity,” Opt. Express21(1), 992–1001 (2013).
    [CrossRef] [PubMed]
  15. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
    [CrossRef] [PubMed]
  16. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
    [CrossRef] [PubMed]
  17. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
    [CrossRef] [PubMed]
  18. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
    [CrossRef] [PubMed]
  19. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
    [CrossRef] [PubMed]
  20. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett.8(11), 3983–3988 (2008).
    [CrossRef] [PubMed]
  21. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength,” Nano Lett.8(8), 2171–2175 (2008).
    [CrossRef] [PubMed]
  22. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
    [CrossRef] [PubMed]
  23. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
    [CrossRef]
  24. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
    [CrossRef]
  25. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
    [CrossRef] [PubMed]
  26. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
    [CrossRef]
  27. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B59(24), 15882–15892 (1999).
    [CrossRef]
  28. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31(10), 1528–1530 (2006).
    [CrossRef] [PubMed]
  29. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009).
    [CrossRef] [PubMed]
  30. S. A. Maier, “Plasmonics: The Benefits of darkness,” Nat. Mater.8(9), 699–700 (2009).
    [CrossRef] [PubMed]
  31. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
    [CrossRef]
  32. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express14(15), 6778–6787 (2006).
    [CrossRef] [PubMed]
  33. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  34. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
    [CrossRef] [PubMed]
  35. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express14(23), 11155–11163 (2006).
    [CrossRef] [PubMed]
  36. J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107(4), 043903 (2011).
    [CrossRef] [PubMed]
  37. B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
    [CrossRef]
  38. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96(19), 193103 (2010).
    [CrossRef]
  39. T. Cao and M. J. Cryan, “Study of incident angle dependence for dual-band double negative-index material using elliptical nanohole arrays,” J. Opt. Soc. Am. A29(3), 209–215 (2012).
    [CrossRef] [PubMed]
  40. Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
    [CrossRef]
  41. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Paniou, and R. M. Osgood, “Demonstration of metal–dielectric negative index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B23(3), 434–438 (2006).
    [CrossRef]
  42. R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
    [CrossRef]
  43. J. Q. Wang, C. Z. Fan, J. N. He, P. Ding, E. J. Liang, and Q. Z. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express21(2), 2236–2244 (2013).
    [CrossRef] [PubMed]
  44. J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
    [CrossRef] [PubMed]
  45. J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys.108(1), 014907 (2010).
    [CrossRef]
  46. http://www.emexplorer.net
  47. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
    [CrossRef] [PubMed]
  48. J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.127(2), 363–379 (1996).
    [CrossRef]
  49. Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B79(3), 035120 (2009).
    [CrossRef]
  50. W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
    [CrossRef] [PubMed]
  51. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006).
    [CrossRef] [PubMed]
  52. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express16(9), 6736–6744 (2008).
    [CrossRef] [PubMed]
  53. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
    [CrossRef]
  54. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev.124(6), 1866–1878 (1961).
    [CrossRef]
  55. B. M. Lagutin, V. L. Sukhorukov, I. D. Petrov, H. Schmoranzer, A. Ehresmann, and K. H. Schartner, “Photoionization of Kr near the 4s threshold. IV. Photoionization through the autoionization of doubly-excited states,” J. Phys. At. Mol. Opt. Phys.27(21), 5221–5239 (1994).
    [CrossRef]
  56. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010).
    [CrossRef] [PubMed]
  57. L. Zhu, L. Dong, F. Y. Meng, J. H. Fu, and Q. Wu, “Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application,” Appl. Opt.51(32), 7794–7799 (2012).
    [CrossRef] [PubMed]
  58. H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett.94(7), 073117 (2009).
    [CrossRef]
  59. J. Zhao, C. J. Zhang, P. V. Braun, and H. Giessen, “Large-Area Low-Cost Plasmonic Nanostructures in the NIR for Fano Resonant Sensing,” Adv. Mater.24(35), OP247–OP252 (2012).
    [CrossRef] [PubMed]

2013 (2)

2012 (7)

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

T. Cao and M. J. Cryan, “Study of incident angle dependence for dual-band double negative-index material using elliptical nanohole arrays,” J. Opt. Soc. Am. A29(3), 209–215 (2012).
[CrossRef] [PubMed]

L. Zhu, L. Dong, F. Y. Meng, J. H. Fu, and Q. Wu, “Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application,” Appl. Opt.51(32), 7794–7799 (2012).
[CrossRef] [PubMed]

J. Zhao, C. J. Zhang, P. V. Braun, and H. Giessen, “Large-Area Low-Cost Plasmonic Nanostructures in the NIR for Fano Resonant Sensing,” Adv. Mater.24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
[CrossRef]

C. W. Qiu, A. Akbarzadeh, T. C. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys.14(3), 033024 (2012).
[CrossRef]

2011 (6)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express1(3), 391–399 (2011).
[CrossRef]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107(4), 043903 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

2010 (4)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96(19), 193103 (2010).
[CrossRef]

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys.108(1), 014907 (2010).
[CrossRef]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

2009 (7)

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett.94(7), 073117 (2009).
[CrossRef]

Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B79(3), 035120 (2009).
[CrossRef]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009).
[CrossRef] [PubMed]

S. A. Maier, “Plasmonics: The Benefits of darkness,” Nat. Mater.8(9), 699–700 (2009).
[CrossRef] [PubMed]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

2008 (8)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength,” Nano Lett.8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express16(9), 6736–6744 (2008).
[CrossRef] [PubMed]

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

2007 (3)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

2006 (8)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express14(23), 11155–11163 (2006).
[CrossRef] [PubMed]

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31(10), 1528–1530 (2006).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express14(15), 6778–6787 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Paniou, and R. M. Osgood, “Demonstration of metal–dielectric negative index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B23(3), 434–438 (2006).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2003 (2)

2002 (2)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B59(24), 15882–15892 (1999).
[CrossRef]

1998 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

1996 (1)

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.127(2), 363–379 (1996).
[CrossRef]

1994 (1)

B. M. Lagutin, V. L. Sukhorukov, I. D. Petrov, H. Schmoranzer, A. Ehresmann, and K. H. Schartner, “Photoionization of Kr near the 4s threshold. IV. Photoionization through the autoionization of doubly-excited states,” J. Phys. At. Mol. Opt. Phys.27(21), 5221–5239 (1994).
[CrossRef]

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Akbarzadeh, A.

C. W. Qiu, A. Akbarzadeh, T. C. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys.14(3), 033024 (2012).
[CrossRef]

Al-Naib, I. A. I.

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Azad, A. K.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Beigang, R.

Berenger, J. P.

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.127(2), 363–379 (1996).
[CrossRef]

Braun, P. V.

J. Zhao, C. J. Zhang, P. V. Braun, and H. Giessen, “Large-Area Low-Cost Plasmonic Nanostructures in the NIR for Fano Resonant Sensing,” Adv. Mater.24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

Brueck, S. R.

Brueck, S. R. J.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Paniou, and R. M. Osgood, “Demonstration of metal–dielectric negative index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B23(3), 434–438 (2006).
[CrossRef]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Cao, T.

Cao, W.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Carbonell, J.

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys.108(1), 014907 (2010).
[CrossRef]

Chen, C. J.

Chen, H. M.

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett.94(7), 073117 (2009).
[CrossRef]

Chen, H. T.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Chen, W. T.

Chen, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Cho, H.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Choi, E. M.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Chowdhury, D. R.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Christ, A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength,” Nano Lett.8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Coutaz, J. L.

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys.108(1), 014907 (2010).
[CrossRef]

Croënne, C.

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys.108(1), 014907 (2010).
[CrossRef]

Cryan, M. J.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Danner, A. J.

C. W. Qiu, A. Akbarzadeh, T. C. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys.14(3), 033024 (2012).
[CrossRef]

De La Rue, R. M.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ding, P.

Dong, L.

Dong, Z. G.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Ehresmann, A.

B. M. Lagutin, V. L. Sukhorukov, I. D. Petrov, H. Schmoranzer, A. Ehresmann, and K. H. Schartner, “Photoionization of Kr near the 4s threshold. IV. Photoionization through the autoionization of doubly-excited states,” J. Phys. At. Mol. Opt. Phys.27(21), 5221–5239 (1994).
[CrossRef]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Ekinci, Y.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength,” Nano Lett.8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Etrich, C.

Fainman, Y.

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett.94(7), 073117 (2009).
[CrossRef]

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31(10), 1528–1530 (2006).
[CrossRef] [PubMed]

Fan, C. Z.

Fan, S.

Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B79(3), 035120 (2009).
[CrossRef]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B59(24), 15882–15892 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

Fan, W.

Fan, W. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Fedotov, V. A.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Fu, J. H.

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

Fu, Y. H.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

Garet, F.

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys.108(1), 014907 (2010).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Giessen, H.

J. Zhao, C. J. Zhang, P. V. Braun, and H. Giessen, “Large-Area Low-Cost Plasmonic Nanostructures in the NIR for Fano Resonant Sensing,” Adv. Mater.24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

Gippius, N. A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength,” Nano Lett.8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Gu, J.

Gu, J. Q.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Guo, G. Y.

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

Halas, N. J.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Han, J.

Han, J. G.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Han, T. C.

C. W. Qiu, A. Akbarzadeh, T. C. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys.14(3), 033024 (2012).
[CrossRef]

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Haus, H. A.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B59(24), 15882–15892 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

He, J. N.

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Hsiao, C. T.

Hu, C.

Huang, C.

Huang, R.

Imhof, C.

Joannopoulos, J. D.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B59(24), 15882–15892 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

Johnson, N. P.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Khan, M. J.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B59(24), 15882–15892 (1999).
[CrossRef]

Kher, A.

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett.94(7), 073117 (2009).
[CrossRef]

Khokhar, A. Z.

Kim, A.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Kim, K.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Kim, S. G.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Kivshar, Y. S.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96(19), 193103 (2010).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Kocabas, S. E.

Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B79(3), 035120 (2009).
[CrossRef]

Koch, M.

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Kuhl, J.

Lagutin, B. M.

B. M. Lagutin, V. L. Sukhorukov, I. D. Petrov, H. Schmoranzer, A. Ehresmann, and K. H. Schartner, “Photoionization of Kr near the 4s threshold. IV. Photoionization through the autoionization of doubly-excited states,” J. Phys. At. Mol. Opt. Phys.27(21), 5221–5239 (1994).
[CrossRef]

Lahiri, B.

Lalanne, P.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107(4), 043903 (2011).
[CrossRef] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Lederer, F.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lheurette, E.

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys.108(1), 014907 (2010).
[CrossRef]

Lheurette, É.

N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
[CrossRef]

Li, T.

Li, Z.

Liang, E. J.

Lippens, D.

N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
[CrossRef]

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys.108(1), 014907 (2010).
[CrossRef]

Liu, H.

Liu, H. T.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107(4), 043903 (2011).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

Liu, X. J.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Luo, X.

Ma, Y.

Ma, Y. F.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Ma, Y. G.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

Maier, S. A.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

S. A. Maier, “Plasmonics: The Benefits of darkness,” Nat. Mater.8(9), 699–700 (2009).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Malloy, K. J.

Manolatou, C.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B59(24), 15882–15892 (1999).
[CrossRef]

Martin, O. J. F.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength,” Nano Lett.8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

McMeekin, S. G.

Meng, F. Y.

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Miller, D. A. B.

Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B79(3), 035120 (2009).
[CrossRef]

Minovich, A.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96(19), 193103 (2010).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Morandotti, R.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Neshev, D. N.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96(19), 193103 (2010).
[CrossRef]

Nordlander, P.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Ong, C. K.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

Osgood, R. M.

Ozaki, T.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Pang, L.

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett.94(7), 073117 (2009).
[CrossRef]

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31(10), 1528–1530 (2006).
[CrossRef] [PubMed]

Paniou, N. C.

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express14(15), 6778–6787 (2006).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Papasimakis, N.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Paul, O.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Petrov, I. D.

B. M. Lagutin, V. L. Sukhorukov, I. D. Petrov, H. Schmoranzer, A. Ehresmann, and K. H. Schartner, “Photoionization of Kr near the 4s threshold. IV. Photoionization through the autoionization of doubly-excited states,” J. Phys. At. Mol. Opt. Phys.27(21), 5221–5239 (1994).
[CrossRef]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Powell, D. A.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96(19), 193103 (2010).
[CrossRef]

Prosvirnin, S. L.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Pu, M.

Qiu, C. W.

C. W. Qiu, A. Akbarzadeh, T. C. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys.14(3), 033024 (2012).
[CrossRef]

Reinhard, B.

Rockstuhl, C.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Sauvan, C.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107(4), 043903 (2011).
[CrossRef] [PubMed]

Schartner, K. H.

B. M. Lagutin, V. L. Sukhorukov, I. D. Petrov, H. Schmoranzer, A. Ehresmann, and K. H. Schartner, “Photoionization of Kr near the 4s threshold. IV. Photoionization through the autoionization of doubly-excited states,” J. Phys. At. Mol. Opt. Phys.27(21), 5221–5239 (1994).
[CrossRef]

Schmoranzer, H.

B. M. Lagutin, V. L. Sukhorukov, I. D. Petrov, H. Schmoranzer, A. Ehresmann, and K. H. Schartner, “Photoionization of Kr near the 4s threshold. IV. Photoionization through the autoionization of doubly-excited states,” J. Phys. At. Mol. Opt. Phys.27(21), 5221–5239 (1994).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

Seo, B.

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

Shadrivov, I. V.

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96(19), 193103 (2010).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Singh, R.

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express1(3), 391–399 (2011).
[CrossRef]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Singh, R. J.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Soltani, N.

N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
[CrossRef]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Suh, W.

Sukhorukov, V. L.

B. M. Lagutin, V. L. Sukhorukov, I. D. Petrov, H. Schmoranzer, A. Ehresmann, and K. H. Schartner, “Photoionization of Kr near the 4s threshold. IV. Photoionization through the autoionization of doubly-excited states,” J. Phys. At. Mol. Opt. Phys.27(21), 5221–5239 (1994).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Sun, S.

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Taylor, A. J.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Tetz, K. A.

Tian, Z.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express1(3), 391–399 (2011).
[CrossRef]

Tikhodeev, S. G.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength,” Nano Lett.8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Tsai, D. P.

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Van Dorpe, P.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Veronis, G.

Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B79(3), 035120 (2009).
[CrossRef]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B59(24), 15882–15892 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

Wang, C.

Wang, F. M.

Wang, J. Q.

Wang, P.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

Wang, Y.

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Wu, P. C.

Wu, Q.

Xue, Q. Z.

Yang, J.

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107(4), 043903 (2011).
[CrossRef] [PubMed]

Yang, K. Y.

Yang, Y.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express1(3), 391–399 (2011).
[CrossRef]

Zengerle, R.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

Zhang, C. J.

J. Zhao, C. J. Zhang, P. V. Braun, and H. Giessen, “Large-Area Low-Cost Plasmonic Nanostructures in the NIR for Fano Resonant Sensing,” Adv. Mater.24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Zhang, S.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express1(3), 391–399 (2011).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express14(15), 6778–6787 (2006).
[CrossRef] [PubMed]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Paniou, and R. M. Osgood, “Demonstration of metal–dielectric negative index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B23(3), 434–438 (2006).
[CrossRef]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Zhang, W.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express1(3), 391–399 (2011).
[CrossRef]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

Zhang, W. L.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express14(23), 11155–11163 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhang, X. Q.

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, C. J. Zhang, P. V. Braun, and H. Giessen, “Large-Area Low-Cost Plasmonic Nanostructures in the NIR for Fano Resonant Sensing,” Adv. Mater.24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

Zhao, L.

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

Zhao, Z.

Zheludev, N. I.

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Zhou, L.

Zhu, L.

Zhu, S. N.

Adv. Mater. (1)

J. Zhao, C. J. Zhang, P. V. Braun, and H. Giessen, “Large-Area Low-Cost Plasmonic Nanostructures in the NIR for Fano Resonant Sensing,” Adv. Mater.24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett.94(7), 073117 (2009).
[CrossRef]

A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett.96(19), 193103 (2010).
[CrossRef]

Y. G. Ma, L. Zhao, P. Wang, and C. K. Ong, “Fabrication of negative index materials using dielectric and metallic composite route,” Appl. Phys. Lett.93(18), 184103 (2008).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett.80(6), 908–910 (2002).
[CrossRef]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

J. Appl. Phys. (3)

B. Seo, K. Kim, S. G. Kim, A. Kim, H. Cho, and E. M. Choi, “Observation of trapped-modes excited in double-layered symmetric electric ring resonators,” J. Appl. Phys.111(11), 113106 (2012).
[CrossRef]

N. Soltani, É. Lheurette, and D. Lippens, “Wood anomaly transmission enhancement in fishnet-based metamaterials at terahertz frequencies,” J. Appl. Phys.112(12), 124509 (2012).
[CrossRef]

J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys.108(1), 014907 (2010).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.127(2), 363–379 (1996).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

B. M. Lagutin, V. L. Sukhorukov, I. D. Petrov, H. Schmoranzer, A. Ehresmann, and K. H. Schartner, “Photoionization of Kr near the 4s threshold. IV. Photoionization through the autoionization of doubly-excited states,” J. Phys. At. Mol. Opt. Phys.27(21), 5221–5239 (1994).
[CrossRef]

Nano Lett. (3)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett.10(4), 1103–1107 (2010).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry Breaking in Plasmonic Nanocavities: Subradiant LSPR Sensing and a Tunable Fano Resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength,” Nano Lett.8(8), 2171–2175 (2008).
[CrossRef] [PubMed]

Nat Commun (1)

J. Q. Gu, R. J. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat Commun3, 1151 (2012).
[CrossRef] [PubMed]

Nat. Mater. (3)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

S. A. Maier, “Plasmonics: The Benefits of darkness,” Nat. Mater.8(9), 699–700 (2009).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

New J. Phys. (1)

C. W. Qiu, A. Akbarzadeh, T. C. Han, and A. J. Danner, “Photorealistic rendering of a graded negative-index metamaterial magnifier,” New J. Phys.14(3), 033024 (2012).
[CrossRef]

Opt. Express (9)

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express19(7), 6312–6319 (2011).
[CrossRef] [PubMed]

M. Pu, C. Hu, C. Huang, C. Wang, Z. Zhao, Y. Wang, and X. Luo, “Investigation of Fano resonance in planar metamaterial with perturbed periodicity,” Opt. Express21(1), 992–1001 (2013).
[CrossRef] [PubMed]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express14(23), 11155–11163 (2006).
[CrossRef] [PubMed]

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express17(2), 1107–1115 (2009).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express14(15), 6778–6787 (2006).
[CrossRef] [PubMed]

W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express19(13), 12837–12842 (2011).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006).
[CrossRef] [PubMed]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express16(9), 6736–6744 (2008).
[CrossRef] [PubMed]

J. Q. Wang, C. Z. Fan, J. N. He, P. Ding, E. J. Liang, and Q. Z. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express21(2), 2236–2244 (2013).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (3)

Ş. E. Kocabaş, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B79(3), 035120 (2009).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B59(24), 15882–15892 (1999).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Phys. Rev. Lett. (10)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

J. Yang, C. Sauvan, H. T. Liu, and P. Lalanne, “Theory of fishnet negative-index optical metamaterials,” Phys. Rev. Lett.107(4), 043903 (2011).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Science (4)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Other (1)

http://www.emexplorer.net

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of the symmetric MDM structure consisting of a 60nm thick Al2O3 dielectric layer between two 30nm thick Au films perforated with a square array of elliptical holes residing on a 200μm thick BK7 glass. (b) Illustration of the symmetric element of ENA, the lattice constant is L = 400nm and hole diameters are d1 = 260nm, d2 = 160nm. (c) Schematic of the asymmetric MDM structure consisting of a 60nm thick Al2O3 dielectric layer between two 30nm thick Au films perforated with a square array of elliptical holes residing on a 200μm thick BK7 glass. (d) Illustration of the asymmetric element of ENA, the lattice constant is L = 400nm, hole diameters are d1 = 260nm, d2 = 160nm, δ is the distance of the upper elliptical hole from the centre. (e) Schematic of the symmetric structure consisting of a 30nm thick Au film perforated with a square array of elliptical holes residing on a 200μm thick BK7 glass. (f) Illustration of the symmetric element of ENA, the lattice constant is L = 400nm and hole diameters are d1 = 260nm, d2 = 160nm.

Fig. 2
Fig. 2

3D- FDTD simulation of the transmission spectrum of the symmetric multilayer ENA [see Fig. 1(a)] and its reference structure consisting of the identical ENA embedded through single Au layer [see Fig. 1(e)] for p polarization at normal incidence.

Fig. 3
Fig. 3

3D- FDTD simulation of (a) total electric field intensity distribution, (b) total magnetic field intensity distribution and JD distribution along β plane for the symmetric MDM-ENA, at normal incident angle where λ = 1284nm; Simulation of (c) total electric field intensity distribution, (d) total magnetic field intensity distribution and JD distribution for the symmetric single layer ENA at normal incident angle where λ = 1284nm

Fig. 4
Fig. 4

3D-FDTD simulation of the transmission spectrums of symmetric MDM-ENA [see Fig. 1(a)] and asymmetric MDM- ENA [see Fig. 1(c)] for p polarization at normal incidence.

Fig. 5
Fig. 5

3D-FDTD simulation of (a) total electric field intensity distribution, (b) total magnetic field intensity distribution and JD distribution along β plane for the symmetric multilayer ENA, where λ = 1284nm; Simulation of (c) total electric field intensity distribution, (d) total magnetic field intensity distribution and JD distribution for the asymmetric multilayer ENA where λ = 1300nm. (e) total electric field intensity distribution, (f) total magnetic field intensity distribution and JD distribution for the asymmetric multilayer ENA where λ = 1228nm.

Fig. 6
Fig. 6

3D-FDTD simulation of spectrum of transmission of asymmetric multilayer ENA for different values of δ from 10nm to 60nm at normal incidence.

Fig. 7
Fig. 7

(a) 3D-FDTD simulation of the transmission spectrums (red dot) of the symmetric MDM-ENA and best-fits to the single FR lineshape Eq. (1) (blue solid); (b) 3D-FDTD simulation of the transmission spectrums (red dot) of the asymmetric MDM- ENA and best-fits to the double FR lineshape Eq. (2) (blue solid).

Fig. 8
Fig. 8

3D-FDTD simulation of (a)transmission spectra of symmetric MDM-ENA for different values of the refractive index of the surrounding medium; (b)transmission spectra of asymmetric MDM-ENA for different values of the refractive index of the surrounding medium; (c)wavelength shift of symmetric MDM-ENA and asymmetric MDM-ENA as a function of the surrounding dielectric; (d)change of the phenomenological shape parameter as a function of the surrounding dielectric.

Tables (1)

Tables Icon

Table 1 Aymmetric Parameters used in the FR Lineshape to Fit the Transmissions of the Symmetric MDM-ENA and Asymmetric MDM-ENA

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T= A 1 + F 1 ( ε 1 + q 1 ) 2 1+ ε 1 2
T= A 0 + F 2 ( ε 2 + q 2 ) 2 1+ ε 2 2 + F 4 ( ε 4 + q 4 ) 2 1+ ε 4 2
FOM= S(nm/RIU) Γ(nm)

Metrics